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Abstract: Object detection and segmentation represents the basis for many tasks in computer and machine vision. For instance, in
biometric recognition systems the detection of the region-of-interest (ROI) is one of the most crucial steps in the overall processing
pipeline, significantly impacting the performance of the entire recognition system. Existing approaches to ear detection, for example,
are commonly susceptible to the presence of severe occlusions, ear accessories or variable illumination conditions and often
deteriorate in their performance if applied on ear images captured in unconstrained settings. To address these shortcomings, we
present in this paper a novel ear detection technique based on convolutional encoder-decoder networks (CEDs). We formulate the
problem of ear detection as a two-class segmentation problem and design and train a CED-network architecture to distinguish
between image-pixels belonging to the ear and the non-ear class. We post-processed the output of the network to refine the
segmentation and determine the final locations of the ears in the input image. Unlike competing techniques, our approach does not
simply return a bounding box around the detected ear, but provides detailed, pixel-wise information about the location of the ears in
the image. Experiments on a dataset gathered from the web (a.k.a. in the wild) show that the proposed technique ensures good
detection results in the presence of various covariate factors and significantly outperforms competing methods from the literature.

1 Introduction

Ear recognition is gaining on popularity over the the last few years [1–
3]. One of the reasons could be the numerous application possibilities
in forensics, security and surveillance. However, despite its potential,
only a limited number of fully automatic techniques has been pro-
posed and presented in the literature so far. Many recent surveys on
ear recognition ascribe this fact to the lack of efficient detection tech-
niques, which are capable of determining the location of the ear(s)
in the input images and represent a key component of automatic
ear recognition systems [4–6]. In fact, the authors of a recent sur-
vey [6] argue that the absence of automatic ear detection approaches
is one the most important factors hindering a wider deployment of
ear recognition technology.

While there has been progress in the area of ear detection over the
years, most of the existing work is limited to laboratory-like settings
and controlled image acquisition conditions, where the appearance
variability of ear images is limited and not representative of real-
world imaging conditions [5]. In unconstrained settings, on the other
hand, ear detection is less well explored and remains challenging due
to appearance changes caused by shape, size, and color variations,
occlusions by hair strains or accessories and imaging conditions,
which often vary due to different illumination and viewing angles.
In these conditions, ear detection is still an unsolved problem and
no widely adopted solution has been (to the best of our knowledge)
proposed yet in the literature [7].

In this paper, we try to address this gap and introduce a novel ear
detection approach based on convolutional neural networks (CNNs).
We pose the ear detection problem as a two-class semantic segmenta-
tion task, where the goal is to assign each image pixel to either the ear
or to the non-ear class. We design a convolutional encoder-decoder
network (CED) for this problem by incorporating ideas from success-
ful recent architectures such as SegNet [8, 9], U-Net [10] and the
Hourglass model [11] to classify the image pixels into one of the two
classes and use the trained network to generate an initial segmenta-
tion result from the input image. We then refine the result through a

post-processing procedure that takes anthropometric assumptions into
account and removes spurious image regions from the final output.
Different from existing solutions to ear detection which typically
return only bounding rectangles or ellipses for the detected ears in
each image, our approach provides information about the locations
of the ears at the pixel level. Such information is particularly useful
for ear recognition, as it allows to exclude background pixels from
the feature extraction and classification stages, which is not possi-
ble with standard detection techniques. However, certain restrictions
apply: ears that are captured under severe angles or that are too small
make ear recognition difficult or in the worst case impossible [12, 13].
Nevertheless, we expect that even with such images, recognition
capabilities will improve over time.

We evaluate the pixel-wise ear detection (PED) approach based on
our convolution encoder-decoder network (CED), called PED-CED
for short, in experiments on the AWE dataset [6], which is a recent
dataset of ear images gathered from the web with the goal of studying
unconstrained ear recognition technology. The dataset is in our opin-
ion and according to recent work [6, 12] one of the most challenging
datasets currently available in the field of ear recognition which makes
it a suitable choice for the experiments. In contrast to other datasets
typically used to assess ear detection performance, images from the
AWE dataset are not limited to perfect profile face images (i.e., faces
rotated close to 90◦ yaw angles), but feature significant variations in
yaw angles as well. We present a detailed experimental analysis of
the proposed PED-CED approach and study the influence of various
covariates on the detection performance. We also report comparative
experiments with state-of-the-art segmentation and detection tech-
niques from the literature. Our results indicate that the PED-CED
technique is a viable option for ear detection in unconstrained settings
and provides competitive detection performance even in the presence
of different covariate factors.

To summarize, we make the following contributions in this paper:

• we present a novel ear detection technique based on a convolu-
tional encoder-decoder (CED) network that works well on image data
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Table 1 Summary of the surveyed work on ear detection using 2D images. While some works evaluate their methods on multiple datasets, we report only results for the
dataset with the highest detection accuracy. * Not all accuracies were calculated using the same equation. Furthermore, different datasets and protocols were used, so
conclusions about the relative performance of the listed techniques should be avoided.

Year Detection Method Dataset # Test images Accuracy [%]

2007 Hough Transform [15] UND [16] 942 91.0

Canny Edge Detector [17] IITK [14] 700 93.3

2008 Canny Edge Detector and Line Tracing [18] USTB [19] 308 98.1

Adaboost [21] UND [16] 203 100

Distance Transform and Template Matching [22] IITK [14] 150 95.2

2009 Connected component [23] IITK [14] 490 95.9

Skin-Color [24] IITK [14] 150 94.0

2010 Viola-Jones [25] UND-F [16] 940 88.7

Ray Transform [26] XM2VTS [27] 252 98.4

2012 Skin Color and Graph Matching [28] IITK [14] 1780 99.3

HEARD [29] UND-E [16] 200 98.0

2013 Feature Level Fusion and Context Information [30] UND-J2 [16] 1776 99.0

2014 EBPSO [31] FERET [32] 258 95.0

2015 Entropy Hough transform [33] UMIST [34] 564 100

2016 Modified Hausdorff Distance [35] UND-E [16] 464 94.5

captured in completely unconstrained settings and returns pixel-wise
segmentations of the ears in the input images,
• we provide a detailed analysis of the proposed techniques with
respect to various covariates and identify open problems that need to
be addressed to further improve its performance, and
• we report comparative results with state-of-the-art segmentation
and ear detection techniques from the literature.

2 Related Work

In this section we survey the most important techniques for ear detec-
tion with the goal of providing the reader with the necessary context
for our work. A more comprehensive review on existing ear detection
approaches (from 2D as well as 3D imagery) can be found in recent
surveys on this topic [5, 14].

It needs to be noted that no standard benchmarks and evaluation
methodology exists for ear detection technology, which makes it
difficult to compare existing approaches among each other. Authors
typically report different performance metrics and rely on self com-
piled evaluation protocols in their experiments. Furthermore, since
face detection is commonly assumed to have been run on the images
before ear detection is performed, the term ear detection is typically
used interchangeably with ear localization or even ear enrollment.

In [15] the authors propose an ear enrollment algorithm that fits
an ellipse to the ear using the Hough Transform. The approach is
sufficiently tolerant to noise and occlusions and achieves a 91.0%
enrollment success rate on the UND dataset [16] and 100% on
XM2VTS when no occlusions are present. The authors do not
explicitly state what constitutes a successful enrollment attempt.

In [17] the Canny edge detector is used to extract edges from ear
images and the ears outer helix curves are used as features for the
localization process. On the IITK dataset [14] the authors report the
localization accuracy of 93.3%, where the accuracy is defined as:

accuracy =
# of correct detections/localizations

# of all annotated ears
, (1)

In another work using the Canny edge detector [18], the authors report
the localization accuracy of 98.1% on the USTB [19] and 97.1% on
the Carreira-Perpinan dataset [20], but similar to [17] do not provide
information on how a correct ear detection/localization is defined
(i.e., the nominator of Eq. 1).

In the work of [21], a cascaded-AdaBoost-based ear detection
approach is proposed. The authors report the detection rate of 100%
with the false positive rate of 5× 10−6 on 203 profile images from

the UND dataset [16]. Again no formal criterion is given about the
process of establishing the detection and false positive rates, though
it is suggested that the results were examined manually.

Another approach to ear detection based on the distance transform
and template matching is proposed in [22]. The authors report the
detection accuracy (using Eq. (1)) of 95.2% on the IIT Kanpur ear
database. The authors define a correct detection as one that exhibits a
sufficient level (i.e., above some predefined threshold) of similarity
with a generic ear template.

In [23] the connected component analysis of a graph constructed
using the edge map of the image and is evaluated on a data set
consisting of 2361 side face images from the IITK dataset [14]. The
authors fit rectangular regions to the ear images and achieve the
detection accuracy of 95.9% on 490 test images and the detection
accuracy of 94.7% on another test set of 801 images, when at most
15% more pixels are detected around the annotated ground truth.

In [24] the same authors approach the ear detection problem by
segmenting skin-colored regions. Using 150 side face images of the
IITK dataset [14] the approach achieves 94.0% detection accuracy.
The accuracy is again measured through Eq. (1) and similarly to [22]
the correctness of the detection is established based on the similarity
between the detected region and a generic ear template.

Haar features arranged in a cascaded Adaboost classifier, bet-
ter known as Viola-Jones [36], are used in [25] for ear detection.
The authors manually annotate the UND-F [16], UMIST [34], WV
HTF [25] and USTB [19] datasets with rectangles around ears and
use the annotated data for training and testing. The authors achieve
95% detection accuracy on the combined images and 88.7% on the
UND-F dataset. This approach is capable of handling a wide variety
of image variability and operating in real-time.

The authors of [26] propose an ear enrollment technique using the
image ray transform, which highlights the tubular structures of the
ear. Using 252 images from the XM2VTS [27] dataset the authors
achieve a 99.6% enrollment rate and consider an image as success-
fully enrolled if after the enrollment/localization process, the entire
ear is contained in the localized image area.

The approach presented in [28] makes use of the edge map of the
side face images. An edge connectivity graph build on top of the edge
map serves as the basis for ear candidate calculation. The detection
performance is evaluated on the IITK, UND-E and UND-J2 datasets,
achieving 99.3% accuracy on IITK. As suggested by the authors, the
detection accuracy is defined by Eq. (1), but no criterion defining a
correct detection is given by the authors.

The HEARD [29] ear detection method is based on three main
shape features of the human ear: the height-to-width ratio of the ear,
the area-to-perimeter ratio of the ear, and the fact that the ear’s outline
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Fig. 1: Overview of the PED-CED ear detection approach. Ear detection is posed as a segmentation problem and solved using a convolutional
encoder-decoder network (i.e., the segmentation network). The segmentation network takes an RGB-image (containing a face) as input and
returns ear candidate regions as a result. The output is then post-processed and (at most) two largest areas are retained.

is the most rounded outline on the side of a human face. To avoid
occlusions caused by hair and earrings the method looks for the inner
part of the ear instead of the outer part. The authors use the UND [16],
CVL [37] and IITK [14] datasets. The method is able to detect 98.0%
of ears in the UND-E dataset [16]. However, no information is given
by the authors on how the reported detection accuracy is calculated.

The ear detection algorithm proposed in [30] uses texture and depth
information to localize ears in profile-face images and images taken
at different angles. Details on the ear surface and edge information
are used for finding the ear outline in an image. The algorithm utilizes
the fact that the surface of the outer ear has a delicate structure with
high local curvature. The ear detection procedure returns an enclosing
rectangle of the best ear candidate with a detection rate of 99.0%. A
detection was considered successful when the overlap O between the
ground truth pixels G (i.e., the annotated area) and the pixels in the
detected region R is at least 50%. The overlap O is calculated by the
following equation:

O =
2 |G

⋂
R|

|G|+ |R| , (2)

where
⋂

stands for the intersection operator and + for the union.
In [31] the authors present a method called Entropic Binary Particle

Swarm Optimization (EBPSO) which generates an entropy map,
which together with background subtraction is exploited to detect ears
in the given face image. The authors evaluate the detection accuracy
using the CMU PIE [38], Pointing Head Pose [39], FERET [32] and
UMIST [34] datasets. On FERET the authors report the detection
rate of 95.0%, where the detection rate is defined by Eq. (1) and a
detection attempt is considered successful if at least part of the ear is
contained in the detected area.

The authors of [33] propose an ear detection approach that relies
on the entropy-Hough transform. A combination of a hybrid ear local-
izer and an ellipsoid ear classifier is used to predict locations of ears.
The authors achieve 100.0% detection rate on the UMIST [34] and
FEI [40] datasets and 74.0% on FERET. The detection rate is com-
puted with Eq. (1) and a detection attempt is considered successful
if the center of the detected region is close enough to the center of
the annotated ground truth (i.e., the distance is below some threshold)
and the detected area contains the entire ear.

The authors of [35] present a new scheme for automatic ear local-
ization relying on template matching with the modified Hausdorff
distance. The benefit of this technique is that it does not depend
on pixel intensities and that the template incorporates various ear
shapes. Thus, this approach is invariant to illumination, pose, shape
and occlusion of the ear images. The detection accuracy of the tech-
nique was tested on two datasets, i.e., the CVL face database [37] and
the UND-E database [16], on which accuracies of 91.0% and 94.5%
were obtained, respectively. The accuracy is calculated by Eq. (1),
but no criteria for a correct detection are reported.

A summary of the surveyed work is presented in Table 1. Note
again that reported accuracies are not directly comparable, as different
datasets, performance metrics and evaluation protocols were used by
the authors.

3 Pixel-wise Ear Detection with CEDs

In this section we present our Pixel-wise Ear Detection technique
based on Convolutional Encoder-Decoder networks (PED-CED). We
start the section with some motivation and a high-level overview of
the proposed technique and then describe the segmentation network
and the post-processing step used to generate the final detection
results.

3.1 Overview and Motivation

Deep encoder-decoder architectures are widely used today for various
vision problems, such as image translation [10], image restoration
and denoising [41, 42], contour detection [43] and semantic segmen-
tation [44]. The main idea of these architectures is to first produce an
abstract high-level encoding of the input image through a hierarchy
of convolutional and pooling layers and then decode the generated
representation (encoding) into the targeted output format with a series
of deconvolutions and unpoolings. Such architectures are particularly
suitable for conditional generative tasks, such as semantic segmenta-
tion, where an output image with specific target characteristics needs
to be generated based on the provided input.

Due to the recent success of encoder-decoder architectures and the
availability of pre-trained recognition models that can be exploited for
the encoding, we design our PED-CED technique around this class of
deep models. Our detection pipeline builds on the assumption that a
single face is present in the input image and that the goal is to detect
at most two ears. This assumption is reasonable given the fact that the
input image is typically subjected to a face detection procedure prior
to ear detection. No other assumptions regarding the input images are
made, they are free to vary in terms of appearance, imaging conditions
and alike, which is not the case for many competing methods, e.g., [15,
17, 18, 26, 28], which often require images of sufficient profile or
rely on the visibility of certain ear-parts.

A high-level overview of our PED-CED detection approach is
shown in Fig. 2. To detect ears in the image, we exploit a convolu-
tional encoder-decoder (CED) network similar to [8, 9], but design
the network to include connections that propagate information from
the encoding layers to corresponding decoding layers. These connec-
tions ensure that we do not loose resolution (i.e., detailed information)
at the output of the network due to the compression of information in
the encoder. Different from other CED architectures from the litera-
ture, we exploit so-called pooling connections (introduced in [44]) as
well as shortcut connections between convolutional layers [10, 11]
to retain detail in the outputs of the CED model. As we show in the
experimental section, these combined sources of information signifi-
cantly contribute to the overall performance of the CED segmentation
network and allow us to label each pixel in the input image with
either the ear or non-ear class label with high efficiency. Because the
segmentation procedure sometimes also returns spurious labels, we
post-process the segmentation results and retain (at most) the two
largest ear regions. This step corresponds to our assumption that a
single face is present in the image and, hence, at most two ears may
be found by the detection procedure.

A detailed description of the PED-CED approach is given in the
following sections.
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Table 2 High-level summary of the layers used in our CED architecture. A convolutional layer is always followed by a BN and a ReLU layer.

Layer Number/Label Type of Layer Number of Filters Filter/(Un)pooling Size Data/Output Size Note

- Data/input - - 480× 360× 3 RGB image

1, 2 Convolutional 64 3× 3 480× 360× 64 No shortcut connections

(a) Max pooling - 2× 2 240× 180× 64 Pooling indices forwarded to (j)

3, 4 Convolutional 128 3× 3 240× 180× 128 No shortcut connections

(b) Max pooling - 2× 2 120× 90× 128 Pooling indices forwarded to (i)

5, 6, 7 Convolutional 256 3× 3 120× 90× 256 Shortcut connection from layer # 6 to (after) #21

(c) Max pooling - 2× 2 60× 45× 256 Pooling indices forwarded to (h)

8, 9, 10 Convolutional 512 3× 3 60× 45× 512 Shortcut connection from layer #9 to (after) #18

(d) Max pooling - 2× 2 30× 23× 512 Pooling indices forwarded to (g)

11, 12, 13 Convolutional 512 3× 3 30× 23× 512 Shortcut connection from layer #12 to (after) #15

(e) Max pooling - 2× 2 15× 12× 512 Pooling indices forwarded to (f)

(f) Upsampling/unpooling - 2× 2 30× 23× 512 Pooling indices forwarded from (e)

14, 15, 16 Convolutional 512 3× 3 30× 23× 512 Layer #16 has 1024 input channels - shortcut from #12

(g) Upsampling/unpooling - 2× 2 60× 45× 512 Pooling indices forwarded from (d)

17, 18 Convolutional 512 3× 3 60× 45× 512 Activation maps of layer #18 combined with maps of #9

19 Convolutional 256 3× 3 60× 45× 256 Layer #19 has 1024 input channels

(h) Upsampling/unpooling - 2× 2 120× 90× 256 Pooling indices forwarded from (c)

20, 21 Convolutional 256 3× 3 120× 90× 256 Activation maps of layer #21 combined with maps of #6

22 Convolutional 128 3× 3 120× 90× 128 Layer #22 has 512 input channels

(i) Upsampling/unpooling - 2× 2 240× 180× 128 Pooling indices forwarded from (b)

23 Convolutional 128 3× 3 240× 180× 128 No shortcut connections

24 Convolutional 64 3× 3 240× 180× 64 No shortcut connections

(j) Upsampling/unpooling - 2× 2 480× 360× 64 Pooling indices forwarded from (a)

25 Convolutional 64 3× 3 480× 360× 64 No shortcut connections

26 Convolutional 2 3× 3 480× 360× 2 No shortcut connections

- Softmax - - 480× 360× 1 Outputs initial segmentation

3.2 The segmentation network

The main component of the PED-CED detection technique is the
convolutional encoder-decoder segmentation network, which we build
around the pre-trained VGG-16 model [45] similarly to [8, 9, 44].
The pre-trained VGG-16 model represents a powerful deep model
trained on over 1.2 million images of the ImageNet dataset [46] (there
are over 14 million images in the whole ImageNet dataset) for the
task of object recognition and is publicly available. It is comprised of
13 convolutional layers interspersed with max pooling layers and is a
common choice for the encoding part of CED models also used in our
approach. The decoding part of PED-CED has a similar (but inverted)
architecture to VGG-16, but instead of max pooling layers contains
unpooling layers that upsample the feature maps generated by the
encoders to a larger size. The whole architecture is summarized in
Table 2 and Fig. 2.

Similarly to related models, such as [44] or [10], our overall
CED model consists of a sequence of nonlinear processing layers
(encoders) and a corresponding set of decoders with a pixel-wise
classifier on top. As shown in Fig. 2, a single encoder features several
convolutional layers, a batch normalization layer, a rectified-linear-
unit ReLU layer (shown in gray), and a max-pooling layer (shown in
green). The goal of the encoders is to produce low-resolution feature
maps that compress the semantic information in the input image and
can be fed to the sequence of decoders for upsampling and ultimately
segmentation. Similarly to the encoders, each decoder is also com-
posed of several convolutional layers, a batch normalization layer and
a ReLU layer (shown in gray on the right side of Fig. 2) followed by
an upsampling layer (shown in red). The final layer of the segmenta-
tion network is a pixel-wise softmax layer, which in our case, assigns
each pixel a label corresponding to one of two classes (i.e., ear or
non-ear).To ensure that high frequency details are retained in the seg-
mented images (which is a known problem with CED architectures)
we modify the described architecture and add two types of additional
connections to the model to propagate information from the encoding
layers to the corresponding decoding layers:
• Pooling connections: We forward the max-pooling indices from
the encoders to the corresponding unpooling layers of the decoders

Fig. 2: Illustration of the network structure used for our PED-
CED ear detection approach. The network has a encoder-decoder
architecture and ensures detailed segmentation results by exploiting
propagation of pooling indices from the max-pooling to the unpool-
ing (upsampling) layers similar to [44], but provides an additional
source of information by introducing shortcut connections that for-
ward feature maps from the lower convolutional layers of the encoder
to the corresponding convolutional layers of the decoder similar
to [10, 11, 42]. The layer groups in the figure are marked as: Convo-
lution layers (Conv.), Batch Normalization layers (BN) and ReLU
layers in gray; Pooling layers in green; Upsampling/Unpooling layers
in purple; and the Softmax layer in yellow (the figure is best viewed
in color).

through pooling connections (see lower part of Fig. 2). These
connections allow us exploit the information from the size- and
resolution-reducing pooling layers during the unpooling operation
and consequently to upsample the low-resolution feature maps in
a non-linear manner. The pooling connections contribute towards
retaining high-frequency details in the segmented images and have
initially been introduced for SegNet in [44].
• Shortcut connections: We add shortcut connection between the
convolutional layers of the encoder and decoder. Specifically, we
forward the feature maps from the encoders composed of blocks
of three convolutional layers and concatenate the forwarded feature
maps with the feature maps produced by the convolutional layers of
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the corresponding decoder. We introduce the shortcut connections
only between a single convolutional layers of a given encoder block
and the corresponding decoder layer to reduce redundancy as well as
the computational burden (i.e., we shortcut layers #6 and #21, layers
#9 and #18, and layers #12 and #15). While we also experimented
with shortcut connections between other layers, these had a less
beneficial effect on performance as shown by the results in Section 5
and were dropped from the final model. In general, the impact of the
shortcut connections is two-fold: i) they propagate high-resolution
information from the encoding layers to the decoding layers and help
preserve detail in the segmentation outputs, and ii) they contribute
towards a more efficient training procedure by reducing the problem
of vanishing gradients [47, 48]. Note that shortcut connections have
successfully been used for many related problems, e.g., [10, 11, 41].

3.3 Postprocessing

Once the segmentation network is trained it can be used to generate
initial segmentation results from the input images. However, these
results are not always perfect and despite the fact that only images
with a single face are expected as input to our PED-CED detec-
tion procedure, several ear candidate regions may be present in the
segmentation output. Since the only possible correct result of the
segmentation network is the detection of one or two regions (corre-
sponding to either one or two visible ears in the image), we apply
an additional post-processing step and clean the initial segmentation
output. Thus, we retain only the two largest regions (or one, if only
one was detected) and discard the rest.

4 Experimental Setup

In this section we describe the data, experimental protocols and perfor-
mance metrics used to assess the efficacy of PED-CED ear detection
approach.

4.1 Data, experimental protocol and network training

The dataset used in our experiments comprises the original
(uncropped) images of the Annotated Web Ears (AWE) dataset [6]
and is freely available (both the uncropped version with annotations
and the cropped version) ∗. The dataset contains a total of 1000 anno-
tated images from 100 distinct subject, with 10 images per subject.
All images from the dataset were gathered from the web using a semi-
automatic procedure and were labeled according to yaw, roll and pitch
angles, ear occlusion, presence of accessories, ethnicity, gender and
identity. However, new pixel-wise annotations of ear locations had
to be created in order to evaluate the performance of the PED-CED
approach. To this end, a trained annotator manually marked the ear
locations in each image at the pixel level and stored the resulting
annotations in the form of binary masks for later processing. Fig. 4
shows a few of the original images that we used for our experiments
together with the newly created ground truth. Note that the annota-
tions provide more detailed information about the locations of the
ears than simple rectangular bounding boxes and were already used
in prior publications, such as [49, 50].

From the available 1000 images in the AWE dataset [6], we
use 750 randomly-selected images for training and 250 randomly-
selected images for testing purposes. The training images are used
to learn the parameters of our CED segmentation network, while the
testing images are reserved solely for the final performance evalua-
tion. The images were gathered from the web for the goal of studying
ear recognition technology in unconstrained settings and therefore
exhibit a high-degree of variability unprecedented in other datasets.

The hardware used for experimentation is a desktop PC with an
Intel(R) Core i7-6700K CPU with 32 GiB system memory and an
Nvidia GeForce GTX 980 Ti GPU with 6 GiB of video memory
running Ubuntu 16.04 LTS. On this hardware the training of our

∗http://awe.fri.uni-lj.si
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Fig. 3: Graphical representation of the convergence of the loss dur-
ing network training. The values were sampled every 20 training
iterations.

segmentation network takes around one hour and was completed
with the network parameters converging after approximately 10000
iterations, when stable loss and accuracy values are reached. Figure 3
shows the loss values, collected in steps of 20 iterations throughout
the course of the training process.

To train the segmentation network we use stochastic gradient
descent and set the learning rate to the value of 0.0001, the momen-
tum to 0.9 and the weight decay to 0.005 [51], [52], [53]. We use
the publicly available Caffe implementation of SegNet ∗ to initialize
our network, but modify the last convolutional and softmax layer and
introduce our shortcut connections. We set the number of outputs
of the last convolutional layer to 2 (ear and non-ear) and calculate
new class weights that we apply to the softmax layer to ensure stable
network training. As advocated in [8, 9, 44], we also use median
frequency balancing [54] to compute the class weights for our cross-
entropy loss, which compensates for the fact that pixels from the
ear class cover only a small portion of the input image, while the
the remaining pixels belong to the non-ear class. Without frequency
balancing, the network would likely converge to a trivial solution,
where all pixels would be assigned to the dominant (over-represented)
non-ear class. All training images are resized to the resolution of
480× 360 pixels to reduce the needed graphical memory prior to
training.

4.2 Performance metrics

A typical way of measuring the performance of ear detection tech-
nology is to use the detection accuracy, which is typically defined as
the ratio between the number of correct detections and the overall
number of annotated ear areas. However, as already pointed out in
Section 2, what is considered a correct detection is usually defined by
the authors is not used consistently from paper to paper. Since a sin-
gle profile face is typically presumed in the input image, the general
assumption is that only a single ear needs to be detected (localized or
enrolled), so false positives are not considered in the reported results,
and the decisive criterion is whether the correct ear was found or not.

In this work, we measure the performance of our detection
approach by comparing the manually annotated ground-truth loca-
tions and the output of our PED-CED approach during testing. We
report accuracy values for our approach, which are computed as
follows:

Accuracy =
TP + TN

All
, (3)

∗https://github.com/alexgkendall/caffe-segnet
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Fig. 4: Sample uncropped images from the AWE dataset. The top
row shows the input images and the bottom row shows the annotated
ear locations. The ears are annotated at the pixel level in all 1000
images of the AWE dataset (in the images given here, faces were
pixelated in order to guarantee anonymity).

where TP stands for the number of true positives, i.e., the number of
pixels that are correctly classified as part of an ear, TN stands for the
number of true negatives, i.e., the number of pixels that are correctly
classified as non-ear pixels, and All denotes the overall number of
pixels in the given test image. This accuracy value measures the
quality of the segmentation, but is dominated by the non-ear pixels
(i.e., the majority class), which commonly cover most of the test
image. Thus, our accuracy measure is expected to have large values
(close to 1) even if most pixels are classified as belonging to the
non-ear class.

The second performance metric used for our experiments is the
the Intersection over Union (IoU), which is calculated as follows:

IoU =
TP

TP + FP + FN
, (4)

where FP and FN denote the number of false positives (i.e., ear
pixels classified as non-ear pixels) and number of false negatives (i.e.,
non-ear pixels classified as ear pixels), respectively. IoU represents
the ratio between the number of pixels that are present in both the
ground-truth and detected ear areas and the number of pixels in the
union of the annotated and detected ear areas. As such it measures
it measures the quality (or tightness) of the detection. A value of 1
means that the detected and annotated ear areas overlap perfectly,
while a value of 0 indicates a completely failed detection, i.e. no
detection at all or a detection outside the actual ear area.

The third and the fourth performance metrics reported for our
experiments are recall and precision respectively, defined as:

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
. (6)

Precision measures the proportion of correctly detected ear-pixels
with respect to the overall number of true ear pixels (i.e., how many
detected pixels are relevant), while recall measures the proportion of
correctly detected ear-pixels with respect to the overall number of
detected ear pixels (i.e., how many relevant pixels are detected).

The last measure we report for our experiments is E2, which
considers both type-I and type-II error rates. A lower value of E2
implies better performance and E2 = 0 means maximum precision
and maximum recall (i.e., no false negatives and no false positives).
The performance measure E2 compensates for the disproportion in
the apriori probabilities of the ear and non-ear classes [55] and is
defined as the average of the false positive (FPR = FP/All) and
false negative (FNR = FN/All) rates, i.e.:

E2 =
FPR+ FNR

2
. (7)

5 Results and Discussion

We now present the experimental results aimed at demonstrating the
merits of our PED-CED ear detection approach. We show comparative
results with state-of-the-art techniques from the literature, analyze
the impact of various covariates on the performance of our technique
and show qualitative examples of our detections.

5.1 Assessment and comparison to the state-of-the-art

We evaluate the performance of the PED-CED approach on the entire
test set of 250 AWE images and compute all performance metrics
presented in Section 4.2. The average values of each metric together
with the corresponding standard deviations over the test set are shown
in Table 3. Here, we also report results for 3 competing approaches
to put our technique into perspective and show comparative results
with a state-of-the-art techniques from the literature:

• The Haar-based ear detector from [25] (Haar hereafter), which
exploits the established object detection framework proposed by Viola
and Jones [36]. For the Haar-based ear detector we use the detection
cascades for the left and right ear that ship with OpenCV [56] and opti-
mize the open hyper-parameters for optimal performance. We select
this approach, as it makes minimal assumptions regarding the input
images similarly to our approach and an open-source implementation
is publicly available.
• The SegNet model trained for ear detection (SegNet hereafter).
We select this model, because of its state-of-the-art performance on
segmentation tasks [44] and the architectural similarities with our
model. Thus, we are able to demonstrate the performance of our PED-
CED approach and the impact of our architectural design choices
through direct comparisons on the same dataset.
• The PED-CED approach with additional connections (PED-CED-
alt hereafter), where a fourth shortcut connection is added between the
#4 and #24 convolutional layer of the encoder and decoder, respec-
tively. The goal of including this model is to show how different
connections affect performance.

To be able to compare the segmentation techniques (i.e., PED-CED,
SegNet and PED-CED-alt) and the detection method (i.e., Haar) on
equal footing, we calculate bounding rectangles for our ground-truth
annotations and then compute our performance metrics for the Haar-
based approach by comparing the (corrected) ground truth rectangles
to the bounding boxes returned by the detector. For the segmentation
techniques we compare detections to the ground truth at the pixel
level, making the comparison stricter for this group of techniques.
For the first series of experiments we threshold the softmax output of
the three CNN-based approach using the threshold of 0.5, for Haar
we use OpenCV’s default values.

The results of our assessment are shown in Table 3. While the
accuracy measure shows how many pixels are correctly classified in
the whole image, it needs to be noted that the ear and non-ear class
are not balanced (there is significantly more pixels belonging to the
non-ear class (the majority class) than to the ear class (the minority
class)), so care needs to be taken when interpreting the presented
results. For our test data, the majority class covers 98.9% of all pixels
and the minority class covers the remaining 1.1%. This means that a
classifier/detector assigning all image pixels over the entire test set
would show an overall accuracy of 98.9%. Our PED-CNN detection
approach achieves the average accuracy of 99.4% compared to the
98.8% of the Haar-based detector and the 99.2% and 99.2% achieved
by SegNet and PED-CED-alt, respectively. The E2 measure (lower is
better) is related to the accuracy but is not affected by the a priori class
distribution. As can be seen from Table 3 the proposed PED-CED
approach is the best performer in term of E2 with an average value of
22.2%, while the PED-CED-alt, SegNet and Haar approaches achieve
an E2 value of 24.6%, 25.8% and 36.4%, respectively.

The Intersection over Union (IoU) better reflects the actual per-
formance of the evaluated detectors, and is also not affected by the
distribution of pixels among the majority and minority classes. The
average IoU for our PED-CED detection approach is 55.7%, whereas
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Table 3 Comparison of the proposed PED-CED approach and and competing techniques. The table shows the average accuracy of the detections (Accuracy), the
Intersection Over Union (IoU), the average precision and recall values and the E2 error measure over the test images. Standard deviations are also reported for all
techniques. The metrics are computed over 250 test images. Note that the Haar-based approach was evaluated using bounding rectangles, whereas the remaining three
segmentation techniques were evaluated more strictly using pixel-wise comparisons.

Accuracy [%] IoU [%] Precision [%] Recall [%] E2 [%]
Haar [25] 98.8± 1.1 27.2± 36.5 36.7± 46.6 28.5± 38.4 36.4± 18.2

SegNet [44] 99.2± 0.6 48.3± 23.0 60.8± 26.0 75.9± 33.1 25.8± 11.5

PED-CED-alt (ours) 99.2± 0.6 50.8± 23.6 62.5± 25.9 78.5± 32.2 24.6± 11.8

PED-CED (ours) 99.4± 0.6 55.7± 25.0 67.7± 25.7 77.7± 32.8 22.2± 12.5
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Fig. 5: Histograms for the Intersection-over-Union (IoU) metric for the four evaluated detection approaches. The histograms for the PED-CED
approach shows a much better distribution than the Haar-based approach with most of the mass concentrated at the higher IoU values. The two
competing segmentation approaches perform better, but PED-CED again exhibits a more favorable distribution.
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Fig. 6: Precision-recall curves for our experiments. The graphs
shows that the proposed PED-CED approach clearly outperforms
the considered competing methods.

the Haar-based detector achieves an average IoU of 27.2%. SegNet
and PED-CED-alt perform better, but are still inferior to the proposed
PED-CED detector capitalizing on the importance of our design
choices for the segmentation model. The high standard deviations can
be attributed to some cases where the detector completely misses the
ears. This could be improved by using more diverse images during
training, as detection errors typically happen on images with bad
illumination, extreme viewing angles and in the presence of severe
occlusions (see Section 5.3).

The average precision value is 67.7% for the PED-CED, 36.7%
for the Haar-based detector, 60.8% for SegNet and 63.5% for the
alternative model PED-CED-alt. The high standard deviation in the
case of the Haar detector points to a high number of complete detec-
tion failures. The ranking of the techniques is similar when recall is
considered, but now PED-CED-alt is overall the top performer.

Next to the scalar values in Table 3, we show the complete distribu-
tion of (in our opinion) the most informative performance metric, the
IoU, in Fig. 5. Although, in many cases our PED-CED approach fails

Table 4 The average time for the PED-CED detection procedure and competing
methods on images (of size 480 × 360 pixels) on our hardware setup.

Approach Detection time
Haar [25] 178ms

SegNet [44] 85ms

PED-CED-alt (ours) 89ms

PED-CED (ours) 89ms

completely, the majority of detections is still between 50% and 90%
IoU. The Haar-based detector, on the other hand, exhibits a significant
peak at the low IoU values with more than 150 images showing an
IoU below 5%. The SegNet and alternative model PED-CED-alt are
closer to PED-CED in terms of performance, but still have less mass
around the highest IoU values.

In Fig. 6 we show the complete precision-recall curves for all
three segmentation-based approaches. Among the tested methods,
the proposed PED-CED approach results in the highest precision
values at a given value of the recall. All in all, the presented results
suggest that the proposed PED-CED approach is a viable option for
ear detection (through segmentation) and that our CED architecture
ensures efficient detection results.

The average processing time computed over the entire test set
for the four tested approaches on images of size 480× 360 pixels is
shown in Table 4. The average time for the PED-CED (and PED-CED-
alt) detection procedure is 89 ms, which is comparable to SegNet
(85 ms), orders of magnitude faster from what was reported for the
HEARD approach in [29] (2.48 s) and faster than the Haar-based
detector from [25], which requires 178ms for one image on average
with our configuration that uses separate left and right ear detectors.

5.2 Impact of Covariates

Next, we evaluate the impact of various covariate factors on the
performance of our PED-CED ear detection approach and competing
methods. We use the existing annotations that ship with the AWE
dataset and explore the impact of: i) head pitch, ii) head roll, iii) head
yaw, iv) presence of occlusions, v) gender, and vi) ethnicity. It needs
to be noted that the studied covariates are not necessarily unique to
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Fig. 7: Impact of various covariates on the performance. The box-plots show the distribution of IoU values computed over the corresponding test
set. Actual IoU values (data points) are superimposed over the box-plots and are shown as black dots. The results are plotted in the following
order: Haar, SegNet, PED-CED-alt (P-C-a) and PED-CED (P-C). The results show that PED-CED outperforms other approaches over all
covariates. Note that median line in red is often at zero with Haar. This is due to the fact that in more than half cases Haar makes no predictions
with IoU of more than 0.

(a) 85.4% (b) 84.6% (c) 82.4% (d) 79.9%

(e) 51.0% (f) 50.6% (g) 50.2% (h) 49.0%
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Fig. 8: Sample detection results ordered in terms of decreasing values of IoU. The top row shows some of the best detections, the middle row
shows average detections and the last row shows some of the worst detection examples. All listed percentage values represent IoU-s. (In the
images given here, faces were pixelated in order to guarantee anonymity.)
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each image, so effects of covariate cross talk may be present in the
results.

We report results in the form of covariate-specific box-plots com-
puted from IoU values in Fig. 7. Here, the actual data points (i.e., IoU
values) are also superimposed over the box plots, which is important
for the interpretation of the results, as some covariate classes (i.e., sig-
nificant head roll, Hispanic or middle eastern ethnicity, etc.) contain
only a few samples. The presented results show that the median value
(red lines in the box-plots) of the IoU is reasonably close for all cate-
gories (or labels) of a all covariate factors for the PED-CED approach.
No significant performance difference can be observed for any of
the studied covariates, which suggests that the proposed PED-CED
approach is robust to various sources of variability end ensures stable
detection performance across different covariates. Similar observation
can be made for the remaining tow segmentation-based techniques
(i.e., PED-CED-alt and SegNet), which are also not affected signifi-
cantly by any of the covariates, but overall exhibit lower IoU values
than PED-CED. The Haar based approach, on the other hand, pro-
duces usable detections only on profile images and fails completely
(with a median UoI value of 0) in the presence of even mild head
rotations (in term of pitch, roll or yaw). As seen in Fig. 7(d) and (f),
it is also affected considerably by the presence of occlusions and
ethnicity.

5.3 Qualitative evaluation

We show a few qualitative examples of our detection results in
Fig. 8. The first row of images shows the best detections with IoU
values above 80%, the second detections with IoU values around
50%, which is close to the average value achieved on our test set (see
Table 3) and the last row shows the worst detection results with IoU
values close to 0%. The last row of examples represents complete
failures from our test set.

It needs to be noted that the IoU values around 50% (middle row
in Fig. 8) are achieved on difficult images with variations across pose,
race, occlusion and so forth. These values are also more than sufficient
to ensure good detections that can be exploited by fully automatic
recognition systems. On the other hand, detections with IoU values
close to 0% are of no use to biometric systems and represent cases
where our method is in need of improvement. These cases occur with
images captured at extreme viewing angles with respect to the ears
and in images with limited contrast among others.

In Fig. 9 we show a comparison of the detection results of
all considered approaches. The top row depicts images, where all
tested methods perform well. The second row shows images where
the segmentation-based methods perform well, but the Haar-based
approach struggles - it detects only the person’s right ear in the first
image and misses the ear in the second image completely. In the
first image of the bottom row the CNN-based approaches fail, while
Haar produces a decent detection output, whereas in the second of
the bottom row, Haar does not produce a detection output, while the
CNN-based approaches falsely detect an ear on the persons hand.

6 Conclusion

Ear detection in unconstrained conditions is a difficult problem
affected by: different angles from which images are taken, vari-
ous skin color tones, changes illumination conditions, occlusions,
accessories. In order to address the problem of ear detection in uncon-
strained environments successfully we proposed in this work a new
ear detection approach, called PED-CED, based on a convolutional
encoder-decoder network.

Our experiments showed that PED-CED detects ears with the
average accuracy of 99.4%, the average Intersection over Union
(IoU) of 55.7%, average precision of 67.7% and the average recall
of 77.7%. All of these performance metrics were also shown to be
significantly higher than those achieved by competing methods, such
as the Haar-based ear detector and the SegNet segmentation network.

Our future work with respect to ear detection includes incorporat-
ing contextual information into the detection pipeline, looking for

Haar SegNet PED-CED-a PED-CED

Fig. 9: Sample detections for all four tested approaches. In the images
shown here faces were pixelated in order to guarantee anonymity and
converted to gray-scale so that the detection/segmentation lines are
easier to distinguish. The image is best viewed in colour.

ears only in the vicinity of faces and in specific relation to other facial
parts (such, as the nose, eyes, etc.).

Our long-term plan is to incorporate the presented detection
method into a pipeline of ear recognition. A system like that will
be able to recognize persons based on ears only by inputting plain
images taken in unconstrained environments. Furthermore, consider-
ing the speed of the current implementation of the ear detector, the
recognition should be able to operate in real-time or close to real-time
at the very least.
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