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Abstract
Ear images have been shown to be a reliable modality for biometric recognition with
desirable characteristics, such as high universality, distinctiveness, measurability and
permanence. While a considerable amount of research has been directed towards ear
recognition techniques, the problem of ear alignment is still under‐explored in the open
literature. Nonetheless, accurate alignment of ear images, especially in unconstrained
acquisition scenarios, where the ear appearance is expected to vary widely due to pose and
view point variations, is critical for the performance of all downstream tasks, including
ear recognition. Here, the authors address this problem and present a framework for ear
alignment that relies on a two‐step procedure: (i) automatic landmark detection and (ii)
fiducial point alignment. For the first (landmark detection) step, the authors implement
and train a Two‐Stack Hourglass model (2‐SHGNet) capable of accurately predicting 55
landmarks on diverse ear images captured in uncontrolled conditions. For the second
(alignment) step, the authors use the Random Sample Consensus (RANSAC) algorithm
to align the estimated landmark/fiducial points with a pre‐defined ear shape (i.e. a
collection of average ear landmark positions). The authors evaluate the proposed
framework in comprehensive experiments on the AWEx and ITWE datasets and show
that the 2‐SHGNet model leads to more accurate landmark predictions than competing
state‐of‐the‐art models from the literature. Furthermore, the authors also demonstrate
that the alignment step significantly improves recognition accuracy with ear images from
unconstrained environments compared to unaligned imagery.
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1 | INTRODUCTION

Ear recognition techniques have seen considerable improve-
ments over the years and consequently contributed towards
increased interest in automated ear recognition systems [1, 2].
While many powerful recognition approaches, mostly based on
deep learning, have been proposed in the literature recently, the
problem of ear alignment has received comparably less atten-
tion, as also emphasised in recent surveys in this field. [2, 3],
Despite its importance and (potentially beneficial) impact on all
downstream tasks, efficient ear alignment in diverse settings is
still largely unsolved.

In general, the problem of ear alignment emerges in loosely
constrained acquisition scenarios, where ear images are
commonly captured under various head orientations and

poses. Despite the use of ear detection/segmentation pro-
cedures, these acquisition scenarios typically lead to significant
pose variability in the final ear images, as illustrated in
Figure 1a. Such pose variability introduces noticeable differ-
ences in the ear appearance and has a considerable impact on
all components of ear recognition systems, including the
representation‐calculation step and template comparison pro-
cedure. Minimising errors induced by poorly aligned ear images
is, therefore, critical for recognition systems relying on ear
biometrics.

There are several issues that make landmark detection with
ear images particularly challenging, that is,

� When captured in unconstrained settings, ear images exhibit
a considerable level of appearance variability caused by pose
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variations, occlusions by hair and other accessories, illumi-
nation changes and other similar factors.

� The ears typically cover only a small portion of the image,
leading to input samples for the landmarking procedure that
are of mostly low‐resolution.

� The cartilage structures of the ear that are shared among
individuals (e.g., the helix, antihelix etc.) correspond to
smooth curvature in the ear images with indistinct appear-
ance, which makes it difficult to identify common anchor
points (landmarks) for alignment across different subjects.

The outlined challenges and importance of alignment for
ear recognition provide a strong motivation for research into
ear landmarking models that are capable of providing reliable
results with diverse input images captured in unconstrained
settings. Such landmarking models can provide information on
point‐to‐point correspondences across ear images and be used
with standard registration schemes to align the images in
accordance with some pre‐defined canonical shape. While
existing solutions in this area were shown to yield competitive
results, for example, Refs. [4, 5], robust landmarking across ear
images with challenging characteristics with respect to pose,
resolution, head orientation, occlusion and other similar
nuisance factors, induced by the unconstrained nature of the
acquisition procedure, still represents an open problem.

To address this gap, we present in this paper a novel
landmarking model tailored towards the task of ear alignment,
as illustrated in Figure 1b. At the core of the solution is a Two‐
Stack Hourglass Network (2‐SHGNet), a convolutional neural
network (CNN), capable of identifying a markup of 55 land-
marks of the ear. The landmarks generated by 2‐SHGNet are
then used with an alignment procedure based on the Random
Sample Consensus (RANSAC) algorithm to align the ear im-
ages with a canonical shape template of the ear. We evaluate
the 2‐SHGNet model on two publicly available datasets, that is,
ITWE (In‐The‐Wild Ear) [4] and AWEx (Extended Annotated
Web Ears) [2, 6] dataset, and compare it to several state‐of‐the‐
art landmark detection methods from the literature. To further
demonstrate, the merits of ear alignment with our approach,

we also evaluate the impact of alignment on the performance
of various recent ear recognition techniques. The experimental
results show that the proposed model yields highly accurate
landmark detection results with diverse input images and that
the alignment if beneficial for recognition performance of all
tested models.

A summary of the key contributions of this paper is given
in the following bulleted list:

� A novel framework landmark‐based ear alignment: We
describe a deep learning model, abbreviated 2‐SHGNet, for
2D landmark detection in ear images. 2‐SHGNet consists of
two stacked hourglass models that sequentially process the
input image and extract landmark locations that serve as the
basis for ear alignment. As we elaborate in the methodology
section, the 2‐SHGNet model is able to capture and
consolidate information across different image scales,
resulting in a powerful and reliable ear landmarking pro-
cedure that is used as the basis for ear alignment with a
RANSAC‐based alignment step.

� A comprehensive analysis: We illustrate the performance and
characteristics of the proposed ear alignment framework
through quantitative as well as qualitative results and explore
the impact of ear alignment on ear recognition performance.

� Publicly available source code: We make all source code,
including the model definitions, weights and training scripts
freely available to the research community to foster repro-
ducibility. The source code is available from https://github.
com/Anjdroid/ear_alignment_stacked_hourglass.

The rest of this paper is structured as follows: in Section 2
we describe related work on ear alignment as well as ear and
face based landmark detection. In Section 3 we present the
methodology and in Section 4 we present the experimental
evaluation of the proposed alignment framework. Finally, we
conclude the paper with directions for future work and some
closing remarks in Section 6.

2 | RELATED WORK

In this section, we review existing work on ear alignment and
landmarking as well as literature on alignment techniques
developed for facial images. The goal of this section is to
provide factual background and context for the proposed
alignment framework.

2.1 | Ear alignment

Early work on ear alignment focussed mostly on the correction
of in‐plane rotations, for example, [1, 7, 8], where the global oval
shape of the ears was exploited to align different samples. While
these procedures produced reasonable results for high‐quality
images captured in (semi‐) controlled conditions, they were
found to be less suitable for more challenging data acquired in‐
the‐wild, where the assumption about the oval shape may not

F I GURE 1 This paper introduces a novel Two‐Stack Hourglass
Network (2‐SHGNet) for landmark detection in ear images and integrates it
with an alignment procedure to minimise the impact of misalignment on
ear recognition performance.
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apply well due to occlusions and in‐place rotations of the ear
regions. To address such issues, landmark‐based approaches
have been presented in the literature. Zhou et al. [4], for example,
first presented a dataset of 2D ear images captured in the wild
with annotated landmarks and then explored the feasibility of
state‐of‐the‐art methodologies for 2D and 3D landmark
detection. Specifically, they investigated the performance of the
Supervised Descent Method (SDM) [9], Constrained Local
Models (CLMs) [10] and Active Appearance Models (AAMs)
[11]. The authors built two different kinds of AAMs, holistic and
patch‐based, obtaining different deformation models and
appearance representations. Although they reported impressive
landmarking performance with holistic and patch‐based AAMs
in predicting 2D landmarks, issues with detecting landmarks on
ears with higher degrees of pose variations (in terms of pitch, roll
or yaw angles) still remained. Another line of research in ear
landmarking and alignment is looking at deep learning meth-
odologies. In Refs. [5, 12], the authors explored the use of CNN‐
based features for automatic 2D ear landmark detection in un-
constrained imaging scenarios and studied the impact of ear
normalisation (i.e. alignment) on the performance of several
different recognition methods. In these works, the detected
landmarks acted as the basis for geometric ear normalisation
with the use of Principal Component Analysis (PCA). While less
relevant to our research, 3D ear landmark detection has also
been addressed within 3D Point Clouds (PTC) in Ref. [13, 14].
The idea here was to extend the existing state‐of‐the‐art 2D
landmark localization algorithms to 3D.

In this work, we built on the advances outlined above and
present a solution for ear alignment that follows the landmark‐
based framework and combines the landmarking procedure
with a RANSAC‐based alignment step. As we show in the
experimental section, the proposed approach leads to highly
competitive landmarking performance when compared to the
current state‐of‐the art, while the overall alignment procedure
helps to improve recognition accuracy.

2.2 | Landmark‐based alignment with facial
images

Landmark detection is a common step towards alignment with
other biometric modalities as well. Especially with facial images,
landmarking techniques have been very popular, as evidenced
by the tremendous amount of work done in this area [15–19].
Here, the literature has long been focussed on Constrained
Local Models (CLMs) [10] and Active Appearance Models
(AAMs) [11]. More recently, however, deep learning solutions
started dominating this task due to their superior characteristics.
In Ref. [20], Chen et al. presented a kernel density deep neural
network for face alignment and reported competitive results.
The authors of Ref. [21] presented a boundary‐aware face
alignment method using stacked dense U‐Nets. They employed
dual transformers to make the stacked dense U‐Nets spatially
invariant and reported improved performance of facial land-
mark detection on unconstrained data. Yang et al. [22] proposed
a deep CNN, called Stacked Hour‐Glass Network that followed

the idea of Cascaded Shape Regression (CSR) [23] by refining
landmark predictions over a cascade of regression models. The
authors performed extensive experiments on several chal-
lenging face datasets to validate their model. Despite the
progress in facial landmarking presented above, landmark
prediction in facial images in still a challenging problem, where
encoder–decoder solutions (based, for example, on U‐Nets)
have also shown significant promise recently [24–26].

Motivated by the impressive performance of facial land-
marking techniques and particularly the success of stacked/
cascaded models, such as Refs. [22, 27–29], we describe in this
paper a Two‐Stack Hourglass Network capable of locating
landmarks in ear images through a coarse‐to‐fine landmarking
strategy, which results in highly competitive performance and
represents the basis for ear alignment in our experiments.

2.3 | Alternatives to landmark‐based
alignment in biometrics

Recent work on aligning regions‐of‐interest (ROIs) in bio-
metrics has explored alternative solutions to landmark‐based
alignment that often times include end‐to‐end‐models. Mat-
kowski et al. [30], for example, described a ROI‐alignment
module (CNN) capable of registering palmprint regions from
images, captured in unconstrained scenarios, to a pre‐defined
shape. Yin et al. [31] proposed a generative face frontalisa-
tion approach, capable of synthesising frontal faces from off‐
pose headshots, while also ensuring alignment of salient
facial feature points. Similar solutions were also presented in
Refs. [32–34]. Reddy et al. [35] proposed a ROI detector for
periocular images that normalised the geometric characteristics
of the data to a pre‐defined form. The detector used a spatial
transformer network and was again learnt end‐to‐end without
intermediate landmarks.

While the alignment procedures describe above provide for
efficient and well‐performing registrations/alignment schemes,
they are usually also computationally expensive and often need
to generate complete output images. Landmark‐based ap-
proaches, on the other hand, need to only output sparse (i.e. a
limited number of coordinates) landmark points, allowing for
lighter parameterisation of the utilised models. While evaluated
in this paper in conjunction with a RANSAC‐based alignment
procedure, landmarking models are also useful for other tasks
beyond alignment. Other application scenarios include 3D ear
morphing, ear‐shape/orientation based head‐pose estimation,
ear reconstruction or extraction of ear sub‐regions—similar to
what has been done with facial images [36–38]. These char-
acteristics also apply to the Two‐Stack Hourglass Network,
described in this work.

3 | METHODOLOGY

Ear alignment has been an integral pre‐processing step of early
ear recognition techniques [39, 40]. However, with the shift to
unconstrained acquisition settings and the emergence of deep
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learning models, ear recognition has been increasingly
approached within end‐to‐end solutions that tried to explicitly
capture the variability caused by unaligned ear images instead
of introducing separate (potentially error‐prone) normalisation
procedures [2, 41–43]. Nonetheless, recent studies related to
various visual recognition tasks, including ear recognition [4],
have shown that prior alignment can still contribute to better
overall recognition performance. Inspired by these observa-
tions, we study in this paper the task of ear alignment and its
impact on ear recognition performance.

Specifically, we experiment with the overall framework
illustrated in Figure 2, which given an input imageX ∈ RH�W�3

first predicts a set of n landmarks x̂ ¼ x̂1; ŷ1; x̂2; ŷ2;…;
�

x̂n; ŷn�
T ∈ R2n that jointly define the shape of the ear in X and

then normalises the ear image in accordance with a pre‐defined
canonical shape xS. The main component of this framework is a
powerful landmarking model, called 2‐Stack Hourglass
Network (or 2‐SHGNet for short), trained using a heatmap
regression loss. Details on the framework and the 2‐SHGNet
model are given in the following sections.

3.1 | Landmark detection and learning
objective

Our framework leverages a stacked hourglass network archi-
tecture to predict landmark positions in ear images through
heatmap regression. Formally, the network ϕ accepts an ear
image X ∈ RH�W�3 as input and outputs n = 55 so‐called
heatmaps arranged into the tensor Ŷ ∈ RH

0�W 0�n. Here,
each of the n channels Ŷi in Ŷ acts as a probability map, where
the location of the largest value defines the ith landmark
location, that is,

x̂i; ŷi
� �

¼ argmaxðx;yÞ Ŷi
� �

; ð1Þ

where i ∈ {1, 2, …, n}. Once the above expression is evaluated
over all n channels, the n landmark locations x̂i; ŷi

� �
jointly

define the predicted overall ear shape x̂.
To learn the model, we minimise the following Mean

Square Error (MSE) based learning objective over a given (and
labelled) dataset:

L mse ¼ kŶ − Yk22 ¼ kϕðXÞ − Yk22; ð2Þ

where each channel Yi of the reference heatmaps in Y is
constructed by evaluating a Gaussian centred at the ith ground
truth location (xi, yi) over an H0 � W0 lattice, that is,

Yi ¼
1
ffiffiffiffiffiffi
2π
p

σ
exp −

x − xið Þ
2
þ y − yið Þ

2

2σ2
; ð3Þ

where (x, y) denote the spatial coordinates in Yi ∈ RH
0�W 0 and

σ defines the shape of the Gaussian and is set to σ = 1 to
ensure well‐localised reference heatmaps for the training pro-
cedure. The above learning process is referred to as heatmap
regression in the open literature and has been applied suc-
cessfully to different problems, ranging from face alignment to
human pose estimation [5, 20–22].

3.2 | Model architecture: the 2‐Stack
Hourglass Model

Stacked deep learning models have been reported to be highly
efficient in solving human pose estimation and face alignment
problems [20–22]. Such stacked models are capable of pro-
cessing input data through a sequence of simpler models,
where each next model provides additional capabilities to the
overall sequence, resulting in powerful computational archi-
tectures. If implemented with suitable base models (e.g.,
Hourglass models, U‐nets), the stacked topology can also
ensure multi‐scale processing. Inspired by the success of such
models in various problem areas, we implement and train a 2‐
Stack Hourglass Model (2‐SHGNet) for ear landmarking in
this work, as shown in Figure 3. The model consists of a
backbone feature extractor and two hourglass modules stacked
one after the other.

The goal of the backbone feature extractor is to process
the given ear image and compute information‐rich represen-
tations from the input data that can be used later by the
hourglass modules in the heatmap regression task. The back-
bone model is a simple stack of convolutional layers, where
each convolutional layer is followed by batch normalisation,

F I GURE 2 Visualisation of the ear alignment approach developed in this work. The key component of the approach is a 2‐Stack Hourglass model that
located 49 ear landmarks in the input image. These landmarks are then used in the geometric normalisation step to align the overall ear shape with a pre‐defined
ear‐shape template using a RANSAC‐based alignment procedure.
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aimed at reducing the internal covariate shift, and a ReLU
activation. The extracted representations are then fed to the
stacked hourglass modules.
The hourglass module (HGNet hereafter) has an encoder–

decoder structure and resembles an hourglass shape, hence the
name. The encoder–decoder structure allows for the manipu-
lation (and/or translation) of the input data by first extracting
informative features along the layers of the encoder and then
decoding the extracted information into the desired form. The
HGNet structure has a symmetric topology and (similarly as
U‐Net based models) consolidates information across different
resolutions by employing down‐sampling and up‐sampling
operations, which makes it possible to efficiently explore the
relationships between landmarks at different scales.

As shown in the bottom right of Figure 3, the hourglass
module consists of residual blocks (BN + ReLu + 3 � conv.)
with interspersed max pooling layers in the encoder and cor-
responding up‐sampling layers (using the nearest neighbour
strategy [44]) in the decoder. We use ReLU activation functions
in the modules because they enable sparse activations, better
gradient propagation, scale‐invariance and efficient computa-
tions [45]. Furthermore, the max pooling layers help to reduce
the input's dimensionality, the number of learnable parameters,
as well as the overall computational cost and also provide basic
invariance to translations. The residual connections from the

encoder to the decoder help to propagate information at
various scales from the feature extraction side to the decoder
side and facilitate the concatenation of low‐level features with
higher‐level representations with semantic‐awareness.

We use a stack of two hourglass modules to implement the
final two‐stack hourglass landmarking network, as presented
in Figure 3. The implementation of the model was adapted
from Ref. [46] and utilises the PyTorch [47] deep learning
framework for CNNs. The output of the network is a tensor Ŷ
with n = 55 heatmaps, each encoding one landmark location
on the ear through the maximum response in the heatmap. A
few illustrative examples of such heatmaps computed for a test
image are shown in Figure 4. It can be seen how the heatmaps
corresponding to landmark locations on distinct ear structures
of the ear are well localised, while the heatmaps on the ear
outline (i.e. on the helix) are spread out over a larger area, as
expected.

It needs to be noted that we initially tried to solve the
problem of 2D ear landmark detection with the use of a single
HGNet module, which, however, proved to be less capable in
detecting landmark locations in terms of the localisation ac-
curacy. Stacking two HGNets, on the other hand, drastically
improved the accuracy of landmark detection, while still being
able to perform in real time. By stacking the HGNets we
enable the 2‐SHGNet to gradually fine‐tune the landmark

F I GURE 3 High‐level overview of the 2‐Stack Hourglass Network architecture. The model consists of a backbone feature extractor and two stacked
hourglass modules that jointly generate the heatmaps needed for landmark prediction. The kKnN notation is used in the figure to denote a convolutional layer
with N convolutional filters with K � K support.
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positions through stacks, since the information and the context
constraints about ear landmarks are enhanced as the number of
hourglass modules is increased to two [48].

3.3 | Ear normalisation

Assume that the n landmark locations x̂ have been predicted
for a given input ear image X. In the last step of the proposed
framework, we align the image X with a pre‐defined target
shape xS, as shown in the right part of Figure 2. To this end, we
estimate the parameters of an affine geometric transform
T ∈ R3�3 and apply it to the input image X:

x0

y0

1

2

4

3

5¼ T
x
y
1

2

4

3

5; ð4Þ

where (x, y) and (x0, y0) are the coordinates of the initial input
X and aligned ear image X0, respectively.

Because not all landmark locations may be perfectly ac-
curate, we aim to improve the robustness of the alignment step
and utilise the Random Sample Consensus algorithm (RAN-
SAC) [49] when estimating the parameters of T. RANSAC
represents the de facto standard for estimating the parameters
of geometric transforms in the presence of outliers and is
therefore also used in this work.

4 | EXPERIMENTAL SETUP

In this section, we present the experimental setup used to
evaluate the 2‐SHGNet model and overall alignment frame-
work. Specifically, we discuss the datasets selected for the ex-
periments, the pre‐processing procedure, training details and
the performance measures utilised for scoring.

4.1 | Datasets and experimental protocol

For the experimental evaluation, two diverse datasets are used,
that is, ITWE [4] and AWEx [6]. The selected datasets contain
images gathered from the Internet and feature ears captured in
completely unconstrained environments, as seen from the ex-
amples in Figure 5. The ITWE dataset is, to the best of our
knowledge, the only publicly available ear dataset annotated

with landmark annotations and is, therefore, used for training
of the 2‐SHGNet model and evaluation of the landmark‐fitting
performance. The AWEx dataset, on the other hand, is used in
recognition experiments to evaluate the impact of ear align-
ment on recognition performance. Details on both datasets are
given below.

4.1.1 | The ITWE dataset

The ITWE dataset [4] (Collection A) consists of 605 ear images
captured in‐the‐wild with each image representing one subject.
All images are annotated with 55 landmarks in accordance with
the markup scheme on the left side of Figure 5a. As can be
seen, the 55 fiducial points are arranged along the key
morphological structures of the ear. The images in ITWE
dataset were collected from the web by querying Google's
image search service with ear‐related tags. For the experiments,
we split the dataset into a training and testing part, where 500
images with augmentation degree of 35 are used for learning
the landmarking model and 105 images of equal augmentation
degree are used for performance assessment—following Ref.
[4].

4.1.2 | The AWEx dataset

The AWEx dataset [2, 6] consists of 4104 images of 346 and,
similarly to ITWE, was also collected from the web. The
dataset exhibits considerable variability across viewing angles,
occlusions, acquisition conditions (indoor and outdoor), image
quality and resolution. Because the AWEx dataset does not
come with annotated landmarks, we measure the impact of the
landmarking procedure through recognition experiments,
where (following the setup from Ref. [6]) 3104 images of 246
subjects are used for training and the remaining (disjoint) set of
1000 images of 100 subjects for testing.

4.2 | Data pre‐processing

To ensure a common starting point for model training and
testing, all images are subjected to a pre‐processing procedure
prior to the experiments. The first step of this pre‐processing
procedure crops the ear images based on the landmark‐defined
bounding box and then randomly pads the cropped region in
all four image directions with the goal of introducing trans-
lational variability. In the second step, the images are resized to
a fixed (and pre‐defined) size of 256 � 256 pixels. The ground
truth landmark coordinates are also modified to account for
the cropping, padding and scale changes. Because the two
experimental datasets were gathered from the Internet, the ear
images exhibit very different characteristics. A normalisation
procedure is therefore used next, which (i) first equalises the
histograms of the ear images, (ii) then rescales the pixel values
to the range of 0 − 1, and (iii) finally subtracts the dataset's
mean value from each sample image to centre the data. Such

F I GURE 4 Illustrative examples of the heatmaps generated by the 2‐
SHGNet model for five randomly selected landmarks estimated for a test
image. Note how the heatmaps are well localised for landmarks located at
distinct ear structures, while they are spread out over a wider area for less
distinct positions/structures, such as the helix.
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range normalisation is performed on the heatmaps as well,
similar to Ref. [4].

4.3 | Performance measures

Following established evaluation methodology, for example,
Ref. [4], we use the point‐to‐point error normalised by the
diagonal of the ground truth ear bounding box w to evaluate
the performance of the landmarking model. The normalised
point‐to‐point (PPE) error is formally defined as follows:

PPE¼
1
n

Pn
i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x̂i − xið Þ
2
þ ŷi − yi
� �2

q

w
; ð5Þ

where n is again the number of estimated landmarks. The error
takes a value of 0 in the ideal case when the predicted land-
marks equal the annotated ground truth for a given test image.
In general, lower values of PPE imply better performance. In
addition to the normalised point‐to‐point error, we also report
Cumulative Error Distribution (CED) curves, again in accor-
dance with standard evaluation methodology [4, 50].

For the ear recognition experiments, we use the evaluation
protocol proposed by Emeršič et al. [2] and report results in
terms of the Rank‐1 and Rank‐5 recognition performance
defined in Equations (6) and (7), respectively. The Rank‐1
recognition rate measures the proportion of predictions,
which match the ground truth label and the Rank‐5 recognition
rate the proportion of top five predictions thatmatch the ground
truth label. The two recognition rates are defined as follows:

Rank ‐ 1¼
#Correct predictions
#Predictions made

; ð6Þ

Rank ‐ 5¼
#Correct predictions among top f ive

#Predictions made
: ð7Þ

We also compute complete Cumulative Match Score
Characteristic (CMC) curves and report the Area Under the
normalised CMC curves (AUCMC) to measure the ranking
capabilities of the tested ear recognition models.

4.4 | Implementation details and model
complexity

To train the proposed model, the Adaptive Moment Estima-
tion (Adam) [51] optimisation algorithm was used, which is
suggested as a default optimisation technique for training deep
models as it achieves good results fast with little to no tuning
of parameters [52]. Adam is able to perform well on problems
with sparse gradients and on noisy data, which provided large
datasets and large models in terms of trainable parameters [51].
A small learning rate (3e − 6) was selected to ensure slow
learning and a weight decay of 1e − 5 to penalise large weights
and to improve the network's performance. A summary of the
Adam configuration parameters is given in Table 1.

A data augmentation process was used to avoid overfitting.
This included random scaling between 80% and 120% of the
original image height and width, rotations between −45 and 45°
and a shearing factor in the range of −16 to 16, and filling newly
created pixels with edge values, so as not to introduce new
structures into the image. With this procedure, we generated a
fixed‐size training dataset of 18,000 ear images.

The models were trained on a GeForce RTX 2070 SUPER
GPU using the CUDA Toolkit 10.0 with 8 GiB GDDR6
memory. We employed GPU‐based training since it is most
suitable and optimised for training deep model architectures
with large amounts of data. In the final implementation, the 2‐
SHGNet model has 9,757,068 trainable parameters. The model
is able to perform in real time, needing on average 0.45 s to
perform landmark prediction on a single image using the above
specified hardware.

5 | EXPERIMENTS AND RESULTS

In this section, we present experimental results with the aim to
(i) benchmark the performance of the 2‐SHGNet model against
state‐of‐the‐art competitors and demonstrate the impact of
some design choices made, (ii) analyse the capabilities of the
model in a qualitative manner, (iii) explore the limitations of 2‐
SHGNet, (iv) study the feasibility of the geometric alignment/
normalisation step, and (v) explore the impact of ear alignment
of ear recognition performance.

F I GURE 5 Example images from the two datasets used in this work. The ITWE datasets comes with landmark annotations (see the left part of (a)) and is
used for training and testing of the landmarking models. The AWEx dataset has multiple images per subjects and is used to measure the impact of ear alignment
on recognition performance. Both datasets were captured in unconstrained settings and therefore exhibit considerable appearance (and pose) variability.
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5.1 | Evaluation of landmarking
performance

We first evaluate 2‐SHGNet in landmarking experiments on the
test part of the ITWE dataset, but use augmentation techniques
(similarly to the procedure described above for the training data)
to generate a larger test set consisting of 3,780 test images. To
put the performance of the model into perspective, we also
implement a number of competing techniques that can broadly
be grouped into two categories, that is:

� Model‐validationTechniques. The first group of techniques is
meant to validate the characteristics of 2‐SHGNet. We
implement three landmarking techniques for this purpose,
that is:
� Baseline: We use the average of all ground truth annota-
tions over the training images of ITWE as the prediction
of the landmarks on the test images. This approach pro-
vides an estimate of the baseline landmarking performance
that is achievable without using a landmarking model.

� 2‐SUNet: The second technique represents a stack of two
U‐Net models [53] and is included in the experiments to
demonstrate the benefit of using the hour‐glass models
within the landmarking procedure instead of other
alternatives.

� 3‐SUNet: The third techniques is a stack of three sequential
U‐Net models and demonstrates the performance of a
similar but more complex (3‐stack) model design.

� State‐of‐the‐art Techniques. The second group of techniques
are state‐of‐the‐art competitors for ear‐landmark detection.
Here, we follow the work from Ref. [4] and compare against
the following landmarking approaches:
� ZZ Init: Similar to the Baseline solution above, ZZ Init
uses a fixed shape with pre‐defined landmarks computed
from the training data to predict the landmark locations in
the test images. The approach is based on the initialisation
procedure used by Zhou and Zaferiou in Ref. [4].

� AAMs: We implement a number of Active Appearance
Models (AAMs) [11, 54] using dense SIFT [55], HOG [56]
and DCNN features [57]. We denote these techniques as
SIFT + AAM, HOG + AAM and DCNN + AMM,
respectively.

� PAAM: The last baseline from this group is a Patch‐based
Active Appearance Model (PAAM) [58] implemented with
dense SIFT features, that is, SIFT + PAAM. This model
has been shown to yield highly competitive results for face
alignment and is therefore also considered here.

We present the cumulative error distributions generated
based on the normalised point‐to‐point errors in Figure 6 and
report quantitative performance scores in Table 2. Note that
the fraction of test images that achieve a normalised point‐to‐
point error of less or equal to 0.10 is reported separately,
similarly to established literature. As can be seen, the proposed
2‐SHGNet model achieves an average PPE score of 0.0519
and outperforms all other tested methods. Additionally, it also
exhibits the most consistent performance across the test im-
ages, as evidenced by the standard deviation of 0.0173, which
again is the lowest among all evaluated landmarking models.
When looking at the fraction of images with a PPE below 0.10,
we observe that 2‐SHGNet ensures that 99% of all test images
have a lower PPE score than the threshold value, the highest
percentage among all competitors.

When looking at the comparison with the model‐validation
techniques, we observe that the proposed 2‐SHGNet signifi-
cantly outperforms the Baseline solution, suggesting that
considerable performance gains can be expected when using a
trained landmarking approach, as opposed to a pre‐defined ear
shape. Additionally, we see that the hourglass backbone
consistently results in better performance than the U‐Net
models, regardless of whether two or three such models are
stacked one after the other. The comparison in the lower part
of Table 2 shows that all considered state‐of‐the‐art models

TABLE 1 Adam configuration parameter values and descriptions.

Configuration
parameters Value Description

Learning rate 3e − 8 Speed of learning

β1 0.9 Exponential decay rate for the first moment
estimates.

β2 0.999 Exponential decay rate for the second
moment estimates.

ϵ 1e − 8 Small constant to prevent division by zero.

Weight decay 1e − 5 Learning rate decay or L2 penalty.

[4]

F I GURE 6 Cumulative (point‐to‐point) error distributions for the
proposed 2‐SHGNet model and the considered competitors. The curves
were generated on the test part of the ITWE dataset.

8 - HROVATIČ ET AL.
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yield very competitive results. Nonetheless, 2‐SHGNet still
outperforms the best performing competitor (HOG + AAM)
by around 2% in terms of the fraction of images below the
PPE threshold value of 0.10 and yields an average PPE error
that is 3.85% lower than the average error of the
HOG + AAM runner‐up.

5.2 | Qualitative landmark detection results

Next, we present qualitative examples of the landmarking
performance of the 2‐SHGNet model. To provide an idea of
how specific PPE scores (from different bins of the CED
graphs) translate into (visual) landmark fitting quality, we first
show in Figure 7 a few illustrative landmarking results with
different PPE values. Here, the annotated reference shape is
shown in red and the predicted landmarks are shown in blue.
Observe the obvious differences in the accuracy of the land-
mark alignment between the presented examples.

To further analyse the performance of the 2‐SHGNet
model, we provide a cross‐section of results generated with
images from the ITWE and AWEx datasets in Figures 8 and 9,
respectively. The figures again show the predicted landmarks
(blue) versus the ground truth landmarks (red). It can be seen
that the (qualitative) accuracy of predictions on the AWE
dataset is comparable to accuracy on the ITWE dataset. The
model has the ability to reliably predict landmark locations on
colour images of unseen ears in various poses. Moreover, the
model is able to predict landmarks on greyscale images, low
quality noisy images and images with smaller occlusions of the

ears. We observe that the performance of 2‐SHGNet is not
affected by whether colour information is present or not, as
the predicted landmark locations accurately capture the ear and
its shape. Moreover, the model also ensures precise landmark
prediction and description of with very low quality and noisy
images, pointing to its ability to reliably consolidate informa-
tion from different scales and to learn useful features for ear
description. Small partial occlusions of the ear are easily
handled by the 2‐SHGNet model. However, in cases where
earrings or a considerable amount of hair is occluding the ear
shape, the model is unable to predict the obscured landmarks
with high accuracy. Nevertheless, the landmarking perfor-
mance on the visible ear structures is not unaffected by the
erroneous landmarks detected in the occluded areas.

TABLE 2 Landmarking performance on the ITWE dataset.

Method Average PPE ± std ≤0.10 (%)

2‐SHGNet (ours) 0.0519 � 0.0173 99

3‐SUNet 0.0708 � 0.0313 92

2‐SUNet 0.1837 � 0.0683 17

Baseline 0.1327 � 0.0523 47

HOG + AAM 0.0539 � 0.0248 97

SIFT + AAM 0.0522 � 0.0246 94

DCNN + AAM 0.0599 � 0.0272 93

SIFT + PAAM 0.0563 � 0.0264 93

ZZ init 0.1276 � 0.0332 23

F I GURE 7 Visualisations of the detected landmarks with different
PPE values. The reference landmarks are shown in red, the predicted
landmarks in blue. Best viewed in colour and electronically.

F I GURE 8 Qualitative landmarking examples generated by 2‐
SHGNet on the ITWE dataset. The predicted landmarks are shown in blue
and ground truth in red. The figure is best viewed in colour in zoomed in.

F I GURE 9 Qualitative landmarking examples generated by 2‐
SHGNet on the AWEx dataset. The predicted landmarks are shown in blue.
Note that AWEx does not include ground truth landmark locations. The
figure is best viewed in colour in zoomed in.
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5.3 | Model limitations

In Figure 10 we analyse the shortcomings of 2‐SHGNet
through a few example images, on which the model yielded
less convincing results. As can be seen, problems appear when
the model fails to capture the whole ear shape, resulting in
spurious landmarks. Significant occlusion of the ear structures
adversely impact the model, producing erroneous landmarks—
see, for example, the example in the top right corner of
Figure 10. Moreover, landmarks are sometimes also detected in
incorrect locations with low quality and noisy images. In cases
where the colour of the background and ear are similar, the
landmarks do not get accurately detected on the outer ear.
Significant rotation in roll directions in combination with noisy
data produces missing landmarks as well. Despite these issues,
the presented results still show that even in challenging set-
tings, 2‐SHGNet still generates reasonable landmark pre-
dictions that can be used for ear alignment (or geometric
normalisation), as also demonstrated in the next section.

5.4 | Geometric normalisation

The detected landmark locations are used to align the ear
images with a pre‐defined reference shape (i.e. a template with
fixed landmark locations). In Figures 11 and 12, we show a few
qualitative examples of ears from the ITWE and AWEx
datasets before and after geometric normalisation. Note that
despite the presence of spurious landmarks, the 2‐SHGNet
predictions are sufficiently accurate for alignment of ear im-
ages from the two datasets.

To provide a reference frame for the proposed alignment
approach, we present in Figure 13, a qualitative comparison
with two competing alignment techniques on the AWEx
dataset. The first is based on the Cascaded Pose Regression

(CPR) framework from Refs. [1, 23] and the second is a
combination of the SIFT keypoint detector and RANSAC‐
based alignment, originally presented in Ref. [7]. As can be
seen, the CPR‐based method ensures only approximate align-
ment that mainly normalises for rotation and the rough size of
the ears. The SIFT + RANSAC combination is conceptually
similar to the alignment approach proposed in this paper, but
due to the generality of the keypoint detector often leads to
suboptimal results. The proposed approach, on the other hand,
provides the most convincing results due to semantic relevance
of the detected landmarks, which makes RANSAC‐based
alignment straight forward. We also need to note that the
CPR1 and SIFT + RANSAC2 implementations used for the

F I GURE 1 0 Example images from the ITWE dataset, where the
proposed 2‐SHGNet model produced lower PPE scores. The presented
examples provide a cross‐section of failure cases with the goal of providing
insight into the shortcomings of the model. The predicted landmarks are
shown in blue, the ground truth in red. The figure is best viewed in colour
and zoomed in.

F I GURE 1 1 Normalisation results on the ITWE dataset. In each pair
of images, the left part shows the unaligned ear and the right one shows the
aligned version. The landmarks before and after geometric normalisation
are marked blue.

F I GURE 1 2 Normalisation results on the AWEx dataset. For each
pair of images, the left part shows the unaligned ear and the right one
shows the aligned version. The landmarks before and after geometric
normalisation are marked blue.

1
https://github.com/metodribic/ear‐alignment‐cpr
2
https://github.com/metodribic/ear‐alignment‐ransac
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experiments generated a large number of failure cases and were
not able to properly align a significant number of images. The
examples in Figure 13 represent some of the successfully
aligned images.

To further validate, the performance of the implemented
normalisation method, we computed the average ears of un-
aligned and aligned ITWE and AWEx images. The average ears
of both datasets are shown in Figure 14. The produced average
ears, in case of the unaligned images, are very blurry with a
loosely defined ear shape. The average ears of aligned images,
on the other hand, produce a clearer average ear shape with
well‐defined ear structures, pointing to the feasibility of our
approach. For comparison purposes, the average ears
computed from the (successfully aligned) AWEx image are
presented in Figure 15 for the CPR‐based and SIFT + RAN-
SAC alignment approaches. While these aligned ears were
computed from a much lesser number of images (due to a high
failure rate) than the ones in Figure 14, they are somewhat
crisper than the average unaligned image in the third column of
Figure 14, suggesting that the images are now better aligned
overall. However, compared to the result produced by the
proposed methods, the average ears of the two competing
methods are still much blurrier, suggesting weaker alignment
capabilities.

5.5 | Ear recognition results

In the final experimental series, we investigate the impact of
alignment on ear recognition performance. To this end, we
perform recognition experiments on aligned and unaligned
images from the AWEx dataset [6], and evaluate the quality of
our normalisation process using a number of recognition
models [41]. Specifically, we train several deep learning models
with a residual network topology [59], that is, ResNet‐18,
ResNet‐50, ResNet‐101, ResNet‐152. Additionally, we report
results for three different MobileNet versions [60]. MobileNet
is a light‐weight CNN architecture, developed for mobile and
embedded computer vision applications. The architecture uses
a hyperparameter to balance the size of the model, with higher
values (the highest is 1) resulting in heavier models. For our
evaluation, we train MobileNet (0.25), MobileNet (0.5) and
MobileNet (1) following Ref. [41].

We report the results of the recognition experiments in
terms of the Rank‐1, Rank‐5 and AUCMC scores in Table 3.
As can be seen, ear alignment significantly improves recogni-
tion performance for all tested models and across all perfor-
mance scores. We observe the highest performance increase
with the ResNet‐50 model, where the Rank‐1 score is
improved by 50% due to the alignment and the Rank‐5 score is
increased by 27%. If we focus only on the Rank‐1 recognition
rates, we can see relative improvements of 41% for ResNet‐18,
23% ResNet‐101, 24% for ResNet‐152, 14% for MobileNet
(0.25), 31% for MobileNet (0.5) and 17% for MobileNet (1).
Similar improvements can also be observed for the other two
performance indicators. These results clearly show that the
normalisation procedure improves the performance of all
tested ear recognition models.

6 | CONCLUSION

Unconstrained ear recognition remains a challenging task,
especially when considering large ear pose variations. To
address this issue, we studied the ear‐landmark detection and
alignment tasks in this work and developed a framework
capable of locating a large number of ear landmarks in input
images with diverse characteristics and aligning the ears with a
pre‐defined shape template. We formulated ear‐landmark

F I GURE 1 3 Normalisation results on the AWEx dataset. For each
row, the first (far left) image shows the unaligned ear cropped from the
input images after ear detection, the second one shows the aligned CPR‐
based [1] version, the third shows the image aligned with SIFT and
RANSAC [7] and the fourth (far right) shows the proposed alignment.

F I GURE 1 4 Average ears computed from unaligned and aligned ear
images of the ITWE (left) and AWE (right) datasets. Note that the
proposed geometric normalisation contributes towards better alignment of
specific ear structures, which is reflected in the more crisp average
appearance.

F I GURE 1 5 Average ears computed from the aligned ear images of
the AWEx dataset using CPR‐based [1] and SIFT + RANSAC [7]
alignment. Compared to the average of the unaligned ears (third image in
Figure 14), the average CPR (left) and SIFT + RANSAC (right) aligned ear
are less crisp. Also, we note that these two average ears were computed only
from a subset of images, on which the alignment procedures produced
useful results, otherwise this would yield much blurrier results.
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detection as a heatmap regression problem, leveraging on deep
learning techniques as a means to solve it. Specifically, we
implemented a stacked hourglass architecture consisting of two
hourglass networks or 2D ear landmark detection in uncon-
strained scenarios, achieving highly competitive performance
when compared to the state‐of‐the‐art [4]. Furthermore, ex-
periments on the ITWE and AWE datasets showed that the
proposed framework was not only able to successfully align ear
images captured in completely unconstrained scenarios but
also that the alignment procedure was highly beneficial for the
performance of ear recognition models.

As part of our future work, we plan to further refine the
landmarking procedure and incorporate stronger (and task
specific) shape to be able to robustly locate landmarks
occluded by hair and other accessories commonly encountered
with ear images. Additionally, we also plan to explore end‐to‐
end models for ear alignment—with and without intermedi-
ate landmarking steps.
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