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Abstract
Ear recognition technology has long been dominated by (local) descriptor-based techniques due to their formidable

recognition performance and robustness to various sources of image variability. While deep-learning-based techniques

have started to appear in this field only recently, they have already shown potential for further boosting the performance of

ear recognition technology and dethroning descriptor-based methods as the current state of the art. However, while

recognition performance is often the key factor when selecting recognition models for biometric technology, it is equally

important that the behavior of the models is understood and their sensitivity to different covariates is known and well

explored. Other factors, such as the train- and test-time complexity or resource requirements, are also paramount and need

to be consider when designing recognition systems. To explore these issues, we present in this paper a comprehensive

analysis of several descriptor- and deep-learning-based techniques for ear recognition. Our goal is to discover weak points

of contemporary techniques, study the characteristics of the existing technology and identify open problems worth

exploring in the future. We conduct our analysis through identification experiments on the challenging Annotated Web

Ears (AWE) dataset and report our findings. The results of our analysis show that the presence of accessories and high

degrees of head movement significantly impacts the identification performance of all types of recognition models, whereas

mild degrees of the listed factors and other covariates such as gender and ethnicity impact the identification performance

only to a limited extent. From a test-time-complexity point of view, the results suggest that lightweight deep models can be

equally fast as descriptor-based methods given appropriate computing hardware, but require significantly more resources

during training, where descriptor-based methods have a clear advantage. As an additional contribution, we also introduce a

novel dataset of ear images, called AWE Extended (AWEx), which we collected from the web for the training of the deep

models used in our experiments. AWEx contains 4104 images of 346 subjects and represents one of the largest and most

challenging (publicly available) datasets of unconstrained ear images at the disposal of the research community.
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1 Introduction

Automatic ear recognition represents a subproblem of

biometrics with important applications in security,

surveillance and forensics. Many techniques have been

proposed in the literature for ear recognition systems

ranging from geometric and holistic tech-

niques [2, 4, 11, 54, 56] to more recent descriptor-

[6, 8, 33, 36, 42] and deep-learning-based [16–18, 23, 55]

methods. While descriptor-based methods have dominated

the field over the last years, research is moving away from

these methods and is now focusing increasingly on deep-

& Žiga Emeršič
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Tržaška 25, 1000 Ljubljana, Slovenia

123

Neural Computing and Applications (2020) 32:15785–15800
https://doi.org/10.1007/s00521-018-3530-1(0123456789().,-volV)(0123456789().,-volV)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



learning-based models, which recently brought about

considerable advancements in various areas of computer

vision and beyond.

When developing ear recognition technology, it is of

paramount importance to understand how different recog-

nition models behave when applied on challenging data

captured in unconstrained environments where the tech-

nology is ultimately deployed. Variations across pose,

gender, ethnicity, occlusions and alike are common in these

environments and may influence the choice of recognition

approach for a particular application. While one approach

may result is lower performance on established ear

recognition benchmarks, it may still exhibit robustness to

certain covariates and, hence, be favored over another in

specific circumstances. Similarly, if computing resources

are limited or the run-time complexity is important, one

recognition model may be preferred over the other even at

the cost of somewhat lower performance. To facilitate

informed choices during the R&D work, it is therefore

crucial to have empirical evidence about the properties of

the available recognition approaches and have insight into

their characteristics.

While most of the research on ear recognition is focused

on new detection and enrollment techniques, more elabo-

rate recognition models and more discriminative repre-

sentations of ear images, studies focusing on the strengths

and weaknesses of existing techniques are largely missing

from the literature. In this paper, we try to fill this gap and

present a comprehensive analysis of several ear recognition

techniques considered state-of-the-art today. Specifically,

we experiment with eight (dense) descriptor-based ear

recognition techniques and three recent deep-learning-

based recognition models and analyze their characteristics

through comprehensive experiments on a challenging

dataset of ear images, captured in unconstrained settings

(a.k.a in the wild). We aim at identifying which factors (or

covariates) influence the recognition techniques the most

and, hence, contribute the greatest to recognition errors,

what kind of computational complexity is induced by the

recognition techniques during train and test time and what

resources are required to run the selected techniques. A

detailed understanding of these factors is extremely

important not only because it allows us to devise more

effective recognition techniques, but because it helps to

identify future research trends in this area as well.

1.1 State-of-the-art recognition models

Most of the existing surveys on ear recognition,

e.g., [1, 24, 41] identify descriptor-based recognition

techniques as the state of the art in this field. However, as

shown by more recent group evaluations and challenges,

e.g, [23] deep-learning methods, and in particular

convolutional neural networks (CNNs), are starting to

dominate the field due to their excellent performance and

ability to learn image representations (descriptors) directly

from the training data. These two groups of techniques

approach the ear recognition in fundamentally different

ways.

Descriptor-based techniques, for example, extract iden-

tity cues from local image areas and use the extracted

information for identity inference. As emphasized by

Emeršič et al. [24], two groups of techniques can in general

be considered descriptor based: (1) techniques that first

detect interest points in the image and then compute

descriptors for the detected interest points and (2) tech-

niques that compute descriptors densely over the entire

images based on a sliding-window approach (with or

without overlap). Examples of techniques from the first

group include [3, 9] or more recently [46]. A common

characteristic of these techniques is the description of the

interest points independently one from the other, which

makes it possible to design matching techniques with

robustness to partial occlusions of the ear area. Examples of

techniques from the second group include [5, 10, 31, 52].

These techniques also capture the global properties of the

ear in addition to the local characteristics which commonly

results in a higher recognition performance, but the dense

descriptor computation procedure comes at the expense of

the robustness to partial occlusions. Nonetheless, recent

trends in ear recognition favor dense descriptor-based

techniques primarily due to their computational simplicity

and high recognition performance.

Deep-learning-based methods, on the other had, typi-

cally process the input images in a holistic manner and

learn image representations (features, descriptor) directly

from the training data by minimizing some suitable loss at

the output of the recognition model. The most popular

deep-learning models, CNNs, commonly process the data

through a hierarchy of convolutional and pooling layers

that can be seen as stacked feature extractors and once

fully trained can be used to derive highly discriminative

data representations from the input images that can be

exploited for identity inference. While these representa-

tions commonly ensure formidable recognition perfor-

mance, the CNN-training procedure typically requires a

large amount of training data, which may not always be

available and is not needed with descriptor-based meth-

ods. In the field of ear recognition, deep-learning-based

methods appeared only recently [16–18, 23, 55], but were

already shown to outperform local descriptor-based

methods (see [23]).

We contribute to a better understanding of these meth-

ods in this work by conducting an analysis of some of the

key characteristics of both groups of techniques.
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1.2 Contributions and paper organization

We make several important contributions in this paper. A

short list with brief summaries is given below:

• Experimental evaluation We conduct a comprehensive

experimental evaluation of several state-of-the-art ear

recognition techniques on a challenging dataset of ear

images gathered from web with the goal of studying

unconstrained ear recognition. As part of the evalua-

tion, we perform a comparative assessment of recent

descriptor- and deep-learning-based ear recognition

techniques and investigate their robustness by studying

the impact of various covariates, such as ethnicity, head

rotation (in terms of yaw, roll and tilt angles), gender

and presence of occlusions and accessories.

• Dataset To be able to train the deep-learning-based

recognition models, we gather a new dataset of

unconstrained ear images from the web and make it

publicly available to the research community. The new

dataset, named Annotated Web Ears Extended

(AWEx), contains 4104 images of 346 subjects and to

the best of our knowledge represents one of the most

challenging and largest datasets of this kind available

for research purposes. The dataset can be downloaded

from: http://awe.fri.uni-lj.si/.

• Analysis We present an extensive analysis of the

evaluated recognition techniques in terms of recogni-

tion performance, computationally complexity and

resource requirements and thus contribute to new

knowledge in the field and a better understanding of

their characteristics.

The rest of the paper is structured as follows. In Sect. 2, we

review existing work related to our paper and further

motivate our analysis. We describe our experimental setup

and the ear recognition techniques considered in this work

in Sect. 3 and introduce the experimental dataset and

protocol in Sect. 4. We present the results of our analysis

and discuss its implications in Sect. 5. We conclude the

paper with some final comments and directions for future

work in Sect. 6.

2 Motivation and related work

Understanding the characteristics of biometric recognition

technology is of considerable importance to the advance-

ment of the field and key for researchers in this area. What

properties of the input data make the recognition process

difficult? What properties make it is easy? Are certain

techniques better suited for specific data characteristics

than others? What is the computational complexity of the

recognition techniques? What kind of resources are

required? Answers to questions like these make it possible

to target weak points of the existing technology and pro-

vide directions for future research.

In the field of biometric ear recognition, some of the

questions outlined above are (partially) discussed in recent

survey papers, such as [1, 24, 41, 47], where structured

comparisons of existing ear recognition techniques are

presented. The comparisons in these papers are based on

previously reported results and summarize recognition

experiments on different datasets with different experi-

mental protocols. While general trends about the

advancement of ear recognition technology over the years

are presented and some of the strengths and weaknesses are

identified, no detailed information about the performance

of the existing techniques with respect to different

covariates is given.

Similarly to our work, the survey by Emeršič et al. [24]

also presents a comparison of some descriptor-based fea-

ture extraction techniques from the literature using a

challenging dataset and predefined experimental protocol.

However, here we focus on the impact of different

covariates on the recognition performance of the tested

techniques and include analysis of CNN-based approaches

as well. Also, in this paper we provide the analysis of

important model characteristics such as time and space

complexity.

Pflug and Busch [41] compare the performance of var-

ious texture and surface descriptors for ear biometrics, but

different from our work uses the descriptors in combination

with subspace projection techniques. The reported experi-

ments are conducted on a dataset of ear images with lab-

oratory-like quality, but no ablation study is presented.

The study from [44] is likely the closest to our work as

far the evaluation of descriptor-based ear recognition

techniques with respect to different covariates is con-

cerned. However, the focus here is on only on image

characteristics, such as noise and blurring, and not on ear-

related covariates and other factors such as in our work.

Furthermore, since deep-learning models were not yet

applied to ear recognition at the time of writing of [44], the

study does not include the most recent and promising ear

recognition models.

The analysis presented in this work builds on the pre-

liminary version from [19], but extends the study to deep-

learning models, new model characteristics and novel

aspects that were not considered before.

3 Methodology

In this section, we present the methodology used for our

analysis. We start the section with a description of the

experimental setup used and then describe the descriptor-
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and deep-learning-based recognition techniques

considered.

3.1 Experimental setup

To analyze the characteristics of different recognition

models, we use an identification pipeline as illustrated in

Fig. 1. Here, the input images are first subjected to a fea-

ture extraction technique that converts the input RGB ear

images into a discriminative representation by exploiting

either a deep CNN model (marked as scenario A in Fig. 1)

or a descriptor computation procedure (marked as scenario

B in Fig. 1). Once the representation is computed for a

given test images, identity inference is conducted based on

the cosine similarities with a predefined set of gallery

images.

The main difference between the experimental setups

(i.e., scenarios A and B) for the deep-learning and

descriptor-based pipelines is that for setup A we start by

using train and validation sets to learn the parameters of

our CNN models, while for setup B no training is needed.

If we denote the input images into our pipeline as x 2 Rn,

then both setups produce image representations (feature

vectors) y 2 Rd from the input images as:

y ¼ f ðxÞ; ð1Þ

where f ð�Þ is a feature extraction function.

For this work, we consider eight descriptor-based

recognition approaches and three deep CNN models for our

experiments based on either their reported performance for

ear recognition [24, 41] or their popularity within the

research community [25]. We describe the considered

approaches in the following two sections.

3.2 Descriptor-based ear recognition techniques

For the descriptor-based methods, we consider dense

descriptor computation and generate the d-dimensional

feature vectors needed for recognition from grayscale

converted input images (see Fig. 1—setup B). Specifically,

we implement methods based on local binary patterns

(LBPs [7, 24, 26, 43, 45]), (Rotation Invariant) Local

Phase Quantization Features (RILPQ and LPQ [39, 40]),

binarized statistical image features (BSIF [24, 30, 43]),

Histograms of Oriented Gradients (HOGs, [12, 13, 24, 43]),

Fig. 1 The identification pipeline used in our experiments. We

employ the same pipeline for descriptor-based and deep-learning-

based recognition techniques. In both cases, features are extracted

from the input images using either dense descriptor computation or

CNN models. The main difference between the two approaches is in

the experimental setup (A or B), where for the CNN models a training

procedure involving train and validation sets is required (case A),

whereas for the descriptor-based technique no training is needed (case

B). After the feature extraction step, the procedure is the same for

both scenarios, (A) and (B). Each extracted test feature vector is

matched against all gallery feature vectors using the cosine similarity,

and the ID of the most similar gallery vector is returned as the output
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the Dense Scale-Invariant Feature Transform

(DSIFT, [15, 24, 31]), Gabor wavelets [14, 24, 33, 34,

49–51] and Patterns of Oriented Edge Magnitudes

(POEM, [24, 52]) for the analysis.

3.2.1 Local binary patterns

Local binary patterns (LBPs) represent powerful texture

descriptors that achieved competitive recognition perfor-

mance in various areas of computer vision [45]. The use of

the LBP descriptor for ear recognition is mainly motivated

by its computational simplicity and the fact that the texture

of the ear is highly discriminative. Many successful ear

recognition techniques have been presented in the literature

exploiting LBPs either as stand-alone texture representa-

tions or in combination with other techniques,

e.g., [7, 26, 43].

LBPs encode the local texture of an image by generating

binary strings from circular neighborhoods of points

thresholded at the gray-level value of their center pixels.

The generated binary strings are interpreted as decimal

numbers and assigned to the center pixels of the neigh-

borhoods. The number of sampling points P used to gen-

erate the binary strings depends on the radii R of the

circular neighborhoods and results in the following

encoding [45]:

LBPP;R ¼
XP�1

p¼0

2psðgp � gcÞ; ð2Þ

where LBPP;R stands for the computed binary pattern of

some center pixel, gc and gp denote the gray-level values of

the center pixel and the pth pixel from the neighborhood,

respectively, and the thresholding function sð�Þ stands for:

sðxÞ ¼
1 if x� 0;

0 otherwise:

�
ð3Þ

In practice, not all binary patterns returned by Eq. (2) are

useful for texture representation. Typically, only binary

strings with at most two bitwise transitions from 0 to 1 (or

vice versa) are considered in the final descriptor. For a 8-

pixel neighborhood and a consequent 8-bit binary string,

for example, exactly 58 such patterns (called uniform

patterns) can be computed. Most methods exploiting LBPs

with a 8-pixel neighborhood for texture description,

therefore, compute 59-bin histograms from local image

blocks and then concatenate the computed histograms over

all blocks into a global texture descriptor (our d-dimen-

sional feature vector x) that can be used for recognition. A

similar procedure is also used in our experiments in

Section 5.

3.2.2 (Rotation Invariant) Local Phase Quantization

Local Phase Quantization (LPQ) features [39] are very

similar in essence to LBPs, as the local image texture is

again encoded using binary strings, and histograms are

again computed from the binary strings of local image

blocks and concatenated into the final representation of the

given image. LPQ features are computed from the Fourier

phase spectrum of an image and are known to be invariant

to blurring under certain conditions. This feature makes

LPQs an attractive alternative for ear recognition (see,

e.g., [43]), where blurred and low-resolution images rep-

resent a problem for the existing technology.

With LPQ, the local neighborhoods of every pixel in the

image are first transformed into the frequency domain

using a short-term Fourier transform. Local Fourier coef-

ficients are computed at four selected frequency points, and

the local phase information contained in these (complex)

coefficients is then encoded. Here, a similar quantization

scheme is used as in iris recognition systems, where every

complex Fourier coefficient contributes two bits to the final

binary string. The result of this coding procedure is a 8-bit

binary string for every pixel in the image from which the

local 256-bin histograms are computed and later concate-

nated into a global descriptor of the image.

An extension of this technique to Rotation Invariant

Local Phase Quantization (RILPQ) features was presented

in [40]. The idea here is similar to the original LPQ tech-

nique with the difference that a characteristic orientation is

first estimated for the given local neighborhood, and then,

this orientation is used to compute a directed version of the

binary descriptor. The binary descriptor is computed with

the same procedure as the original LPQ, but every local

neighborhood is first rotated in accordance with its char-

acteristic orientation. RILPQ descriptors are not only blur

invariant, but also exhibit a certain degree of robustness

toward image rotation.

3.2.3 Binarized statistical image features

Binarized statistical image features (BSIF) [30] represent a

more recent tool for texture description. Here, binary

strings (encoding texture information) are again con-

structed for each pixel in the image, but this time by pro-

jecting image patches onto a subspace, whose basis vectors

are learned from natural images. The subspace coefficients

are then binarized using simple thresholding. This proce-

dure is equivalent to filtering the input image with a

number of pre-learned filters and binarizing the filter

responses at each pixel location. Each filter contributes 1

bit to the binary string of a pixel making the length of the

binary string dependent on the number of filter used.

Similar to LBP and LPQ, the binary string of each pixel is
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interpreted in decimal form and a global histogram-based

representation (our d-dimensional feature vector x) is

constructed for the given images by concatenating his-

tograms constructed from smaller image blocks.

The main characteristic that makes BSIF features so

appealing is the fact that the binary strings are not con-

structed based on heuristic operations, but on the basis of

statistics of natural images. The idea behind BSIF-based

texture description is in line with recent feature learning

approaches, which produced competitive results for many

computer vision problems in recent years. The use of BSIF

features for ear recognition was advocated by Pflug

et al. [43], where excellent performance was reported.

3.2.4 Histograms of Oriented Gradients

Descriptors exploiting Histograms of Oriented Gradients

(HOGs) were originally introduced for the problem of

human detection by Dalal and Triggs [12], but have since

been successfully applied to various fields of computer

vision, including ear recognition [13, 43]. HOG descriptors

have excellent texture description properties and are con-

sidered robust toward moderate illumination changes. This

fact makes them highly suitable for problems, such as ear

recognition, where illumination-induced variability is one

of the major problems.

HOGs are computed based on a simple procedure. The

computation starts by calculating the gradient of the image

using 1-dimensional convolutional masks, i.e., ½�1; 0; 1�
and ½�1; 0; 1�T. In the next step, the image is divided into a

number of cells and compact histograms of quantized

gradient orientations are computed for each cell. Here, a

voting procedure is used during histogram construction, so

that pixels with higher gradient magnitudes contribute

more to the histogram bins than pixels with lower magni-

tudes. Neighboring cells are then grouped into larger

blocks and normalized to account for potential changes in

contrast and illumination. This normalization procedure is

applied in a sliding-window manner over the entire image

with some overlap between neighboring blocks. Ulti-

mately, all normalized histograms are concatenated into the

final HOG descriptor (our feature vector x) that can be used

for matching and recognition.

3.2.5 Dense Scale-Invariant Feature Transform

The Scale-Invariant Feature Transform (SIFT), introduced

by Lowe in [35], represents one of the most successful

techniques for image description in computer vision. The

original approach to SIFT calculation includes both a

keypoint detector, capable of finding points of interest in an

image, as well as a local descriptor that can effectively

represent the local neighborhood around the detected

keypoints. As indicated in the introductory section, early

techniques to ear recognition relied on the SIFT keypoint

detector as well as the SIFT descriptor, e.g., [3, 15]

and [9], and, therefore, demonstrated a high degree of

robustness toward partial occlusions.

More recent techniques, on the other hand, compute

dense SIFT (DSIFT) representations from the images and

do not rely on the keypoint detector. Here, the keypoints

are simply arranged uniformly into a grid that is placed

over the image. Techniques based on DSIFT

(e.g., [31, 37]) have reported excellent recognition perfor-

mance as well as robustness to partial occlusions similar to

techniques based on the original SIFT formulation. We

evaluate a DSIFT-based technique in the experimental

section and, thus, discuss here only the SIFT keypoint

descriptor. The reader is referred to [35] for a detailed

description of the keypoint detection procedure.

The SIFT descriptor shares similarities with the HOG

descriptor. For every point of interest, SIFT considers a

local neighborhood of 16� 16 pixels. This neighborhood

is partitioned into subregions of 4� 4 pixels, and for each

subregion, an 8-bin histogram is computed based on the

orientations and magnitudes of the image gradient in that

subregion. The gradients are also weighted by a Gaussian

function to give more importance to image gradients closer

to the point of interest and normalized by the dominant

gradient orientation to achieve rotation invariance. The

final dimensionality of the SIFT descriptor is 128 for a

single keypoint, so care needs to be taken when computing

DSIFT representations from the image. The dimensionality

of final feature vector can easily become computationally

prohibitive if too many grid points are chosen for DSIFT

calculation.

3.2.6 Gabor wavelets

2D Gabor wavelets were originally introduced by Daug-

man [14] for the problem of iris coding, but due to their

ability to analyze images at multiple scales and orienta-

tions, they have been successfully employed in other

problem areas as well. In the spatial domain, Gabor

wavelets are defined with the following expression[49, 50]:

wu;vðx; yÞ ¼
f 2u
pcg

e
� f 2u

c2
x02þf 2u

g2
y02

� �

ej2pfux
0
; ð4Þ

where

x0 ¼ x cos hv þ y sin hv;

y0 ¼ �x sin hv þ y cos hv
ð5Þ

and the parameters fu and hv represent the center frequency
and orientation of the complex sinusoidal from Eq. (4),
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respectively. c and g define the ratio between the center

frequency and the size of the Gaussian and ensure that all

generated wavelets share some specific properties [51]. For

feature extraction, a family of wavelets is typically created

and used to extract features from the processed image. This

family commonly consist of wavelets of 5 scales and 8

orientations, i.e., f0; f1; :::; f7 and h0; h1; :::; h4.
To extract Gabor features from an image, the image is

convolved with the entire family of Gabor wavelets (fil-

ters), and the magnitude responses of the convolution

outputs are retained (the phase responses are discarded),

down-sampled and concatenated into a global feature

vector encoding multi-resolution, orientation-dependent

texture information of the input image.

Techniques based on the outlined procedure and its

modifications (e.g., using log-Gabor wavelets) are among

the most popular techniques for ear recogni-

tion [33, 34, 36, 38, 53]. Their advantages lie in their

excellent discriminative properties; however, Gabor fea-

tures are computational relatively complex to compute, as

the input image needs to be filtered with an entire family of

filters.

3.2.7 Patterns of Oriented Edge Magnitudes

Patterns of Oriented Edge Magnitudes (POEM) [52] rep-

resent another popular approach to texture description that

combines ideas from LBP and HOG descriptors as well as

Gabor wavelets.

The POEM construction procedure starts by computing

the gradient of the input image and building magnitude-

weighted histograms of gradient orientations for every

pixel in the image. This histogram is computed from local

pixel neighborhoods referred to by the authors as cells. In

this regard, POEM shares similarities with the HOG

descriptor, which also relies on gradient directions to

encode an image, but different from HOG, POEM com-

putes the histograms densely in a sliding-window manner

over the entire image. After this step, every pixel in the

image is represented by a local histogram of quantized

gradient orientations, or in other words, the image is

decomposed into m oriented gradient images, where m is

the number of discrete orientations of the local histograms.

Each of these images is then encoded using the LBP

operator, and a global image descriptor is constructed by

concatenating all block histograms computed from the

oriented gradient images.

The POEM descriptor has demonstrated impressive

performance for face recognition [52] and exhibits desir-

able properties, such as orientational selectivity, robustness

to moderate illumination changes and low-computational

complexity, which make it appealing for image represen-

tation in ear recognition systems.

3.3 Deep-learning-based ear recognition models

We use the deep-learning-based recognition models as

black-box feature extractors in this work and exploit the

image representations produced by one of the final layers

(i.e., one of the layers before the softmax) of the models as

the d-dimensional feature vectors (descriptors) of the input

images needed for recognition (see Fig. 1—setup A). We

consider three different CNN models for our analysis,

which cover some of the most popular architectures for

recognition networks from the literature, i.e., ResNet [27],

SqueezeNet [29] and the VGG network from [48].

3.3.1 VGG network

The VGG network (or model) [48] is a representative of

so-called very deep CNN models and in the most common

configuration comprises a total of 16 network layers (VGG-

16). The VGG model has been successfully applied to

numerous recognition problems, including ear recognition

(see, e.g., [17, 18, 22, 23]), and has been shown to ensure

state-of-the-art performance of challenging ear datasets.

The main characteristic of the model is the use of sev-

eral consecutive convolutional layers with small 3� 3 fil-

ters. The consecutive stacks of 3� 3 convolutional layers

are able to capture the same information as the larger filters

used in older model architectures, such as AlexNet [32],

but require significantly less parameters that need to be

estimated during training. The 3� 3 filter stacks are

interspersed with max-pooling layers which reduce the

dimensionality of the activation maps produced by the

model layers. The convolutional part of the VGG model is

followed by three fully connected layers with 4096, 4096

and 1000 channels, respectively. Finally, a softmax layer is

used at the top of the model to facilitate training. For our

experiments, we perform network surgery on the VGG

model and use the d ¼ 4096 dimensional output of the

penultimate fully connected layer (fc7) as the feature vector

of the VGG model.

3.3.2 SqueezeNet

SqueezeNet (SNet in the experimental section) represents a

recent CNN model which was shown to ensure AlexNet-

level accuracy with 50� fewer parameters [29]. The model

was first introduced to the field of ear recognition in [22]

with highly competitive results.

SqueezeNet builds on ideas from residual net-

works [27, 28], but additionally introduces so-called

squeeze layers (i.e., convolutional layers with 1� 1 con-

volutions) that serve as bottlenecks of the CNN architec-

ture and aim at further reducing the parameter space of the
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overall model. The network exploits a few additional

design principles: (1) replacement of part of the 3� 3 fil-

ters in the convolutional layers with 1� 1 filters, (2)

postponing the down-sampling steps to later stages in the

network so that convolutional layers have large activation

maps [29] and (3) network pruning. The result of these

design choices is a model that has significantly less

parameters to tune than competing models and can be

trained on relatively small amounts of data. This means

that the model has a small data footprint and that the

training is much faster in comparison with the original

AlexNet implementation. For our experiments, we use the

output of the model layer preceding softmax as the d ¼
86; 527 dimensional feature vector of the SqueezeNet

model.

3.3.3 Residual network: ResNet50

Residual networks (ResNets or RNets, [27]) belong to a

recent class of deep models that introduced shortcut (or

skip) connections into CNN models. These connections

represent identity shortcuts that bypass some of the con-

volutional layers and forward information from the lower

to the higher model layers. This ensures that no informa-

tion is lost along the network, but also facilitates training of

deeper models, i.e., models with a larger number of layers.

The added value of the shortcut connections during model

training is that they also serve as shortcuts for the back-

propagation algorithm used to learn the model parameters

and hence make sure that gradients do not vanish down the

network. From an architectural point of view, the ResNets

are similar to the VGG model and exploit small 3� 3 filter

stacks in their convolutional layers to keep the number of

parameters that need to be learned during training low. In

general, residual networks may feature several hundreds of

model layers; however, for this work we use the standard

ResNet50 architecture.

Residual networks have, to the best of our knowledge,

not been used before in the field of ear recognition, but

have due to their performance in other areas been selected

for our analysis as well. Similar to VGG and SqueezeNet,

we use the output of the last layer before the softmax as the

d ¼ 2048 dimensional feature vector of the ResNet model.

4 Experimental dataset and protocol

For our analysis, we conduct identification experiments on

the introduced Annotated Web Ears Extended (AWEx)

dataset in accordance with the pipeline described in

Sect. 3.1 (see Fig. 1 for details). Our experimental dataset

contains 1000 ear images of 100 subjects (with 10 images

per subject) and was gathered from the web with a

semiautomatic two-step procedure [20, 21, 24]. In the first

step, candidate images for the dataset were collected from

the web using web crawlers that looked for appropriately

tagged imagery on Flickr and Google’s image search. The

candidate images were then manually screened and curated

in the second step to ensure that ears were indeed present in

all images. This approach ensured that the appearance

variability of the images was not artificially reduced

through automatic ear detection techniques and resulted in

a challenging dataset of ear images captured in uncon-

strained settings [24]. This real-life variability is also, to

the best of our knowledge, the biggest advantage compared

to the other ear datasets available. This ensures that the

results of the experiments based on this dataset are to the

large extent applicable to real-life scenarios.

The images of the AWE dataset contain ground truth

annotations in terms of gender, extent of head pitch, roll

and yaw rotations, ethnicity and presence of occlusions and

thus provide a perfect starting point for our analysis. The

labels/annotations were assigned to the images by a trained

annotator and validated by the authors of the dataset.

Because the image acquisition procedure was not con-

trolled, each image from the dataset typically exhibits

variations across several attributes (e.g., large pitch, roll

and yaw angles at the same time) and is annotated with

multiple labels, so attribute cross-talk effects need to be

taken into account when interpreting the results presented

in the results section. The distribution of the individual

label categories is presented in Fig. 2.

To assess the impact of the different covariates, we

conduct identification experiments with the AWE dataset

and report the rank 1 recognition rate (Rank-1) and the

(normalized) area under the cumulative match score curves

(AUC) when presenting results. For each of the experi-

ments, the probes consist of all images with a specific label

(e.g., severe head yaw), while the galleries represent all

images from the AWE dataset. With this setup, the gallery

size is fixed for all experiments, while the number of

probes (and consequently number of conducted identifica-

tion experiments) depends on the label distribution (shown

in Fig. 2) and differs from experiment to experiment.

Related labels are merged for the experiments to ensure

sufficient numbers of samples for each experiment, e.g.,

mild head yaw from both left and right, are merged into

one group of mild yaw, the same for the severe yaw rota-

tion and the other head rotations (roll and pitch).

For the descriptor-based feature extraction methods, we

use the implementations that ship with AWE toolbox and

make no change to the default parameters, which are

described in detail in [24].

Since the considered deep models need to be trained

before they can be exploited for feature extraction, we

collect a novel dataset of ear images from the web, using
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the same procedure as used for the AWE dataset. In total,

we gather 3104 additional images belonging to 246 sub-

jects that were not present in the original AWE data. We

split these images into training (2173 images) and valida-

tion sets (931 images) and use the data splits to train our

deep models. The models are trained on a desktop PC with

Intel Core i7-6700K CPU, 32 GB of RAM and Nvidia

Titan Xp until convergence. We set the learning rate to

0.001 and the weights decay rate to 0.001 divided by the

number of epochs. To avoid over-fitting, we use a high

dropout rate of 0.1 and introduce random perturbations of

100-fold the training data (each image resulted in new 100

perturbated images), where the data transformations are

performed (or not) with a 50% chance. Below is a list of

the perturbations.

• horizontal flipping,

• trimming 0–10% of images on each side,

• Gaussian blurring with r 0–3.0,

• addition of Gaussian noise with scale 0–0.2,

• brightness reduction/increase of pixel intensities by a

value of 10 (over all color channels or over a single

channel),

• contrast increase/decrease of up to 50% (over all color

channels or over a single channel),

• rotation of up to 20� in both directions,

• scale increase/decrease of up to 30%.

As an additional contribution, we merge the newly col-

lected images with the original AWE dataset of ear images

into the Annotated Web Ears Extended (AWEx) dataset,

which now contains a total of 4104 images of 346 subjects

captured in completely unconstrained environments and

makes the dataset publicly available to the research com-

munity through: http://awe.fri.uni-lj.si/. Some example

images from the new dataset are shown in Fig. 3.

5 Experiments and results

In this section, we present the results of our analysis. We

first describe experiments aimed at analyzing the sensitiv-

ity of the recognition approaches toward various covari-

ates, then present a comparative assessment of the tested

methods and finally explore the time and space complexity

of the recognition models.

5.1 Sensitivity analysis

In our first experiments, we evaluate the sensitivity of all

11 recognition approaches to the following covariate fac-

tors: gender, presence of accessories, occlusions, ethnicity,

65%

28%

7%

2%
16%

54%

25%

3%

Up ++ Up +
Neutral Down + Down ++

2%
18%

63%

15%
2%

To Right ++ To Right +
Neutral

14%

31%

6%9%

25%

15%

Frontal Le� Profile Le�
Profile Right Middle Right Frontal Right

61%
21%

11%

7%9%

91%

None Mild SevereCaucasian Asian Black HispanicFemale Male

Gender snoisulccOyticinhtE

hctiPdaeHlloRdaeH Head Yaw

Fig. 2 The graphs show the distribution of covariates (labels) of the

images of the AWE dataset. The dataset contains 1000 images of 100

subjects. Gender and ethnicity are labeled on a per subject basis,

whereas occlusions, head roll, head pitch and head yaw vary for each

image in the dataset. Accessories are not shown explicitly here, but

from the 1000 AWE images, 91% have no accessories, 8% have some

accessories, and 1% (or 9 images) has a significant amount of

accessories
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head pitch, head roll and head yaw. The goal of these

experiments is to establish how the recognition models

behave in general when confronted with data of different

characteristics. We are not interested in the performance

and sensitivity of individual models, but in general trends

that can be seen over all tested techniques, the sensitivity of

individual methods will be the focus of the next section. A

comparison of the Rank-1 recognition rates for this series

of experiments together with the corresponding AUC val-

ues is presented in Fig. 4 and quantitatively in Table 1.

Note that the AUC values in Fig. 4 are size-encoded, where

a bigger circle indicates a higher AUC value.

The results show that severe head rotations, especially

roll, negatively impact the identification performance.

Large pitch rotations also have a detrimental effect on

performance, whereas yaw angles seem to be less crucial

for the performance of the tested methods. These results

can be explained through the geometrical properties of the

ears, which can are mostly flat (with wrinkles). Since all

ear images are usually resized to a fixed input size prior to

feature extraction, this pre-procedure (partially) compen-

sates for head rotations that only change the viewing angle

of the ears (e.g., yaw), but do not result in orientation

changes. To compensate for other head rotations (e.g., roll),

additional alignment steps would need to be considered in

the recognition pipeline.

Among the considered covariates, gender and ethnicity

have the smallest impact on identification performance—

the results for all subgroups of these covariates are very

close, while the minor performance differences are likely a

consequence of the different number of probes in each

subgroup. Surprisingly, occlusions which consist mostly of

hair have a limited impact on performance. The reason for

this, we argue, is that the occlusions are more or less

consistent throughout all ear images for a selected subject.

The presence of accessories, on the other hand, has a

considerable (negative) effect on the recognition perfor-

mance of all techniques, which again is reasonable, as this

type of occlusion varies significantly from image to image.

Although the impact of accessories requires a more in-

depth analysis, we presume that the performance drop can

be attributed to the fact that samples that fall into this

category contain large hearing aids, headphones or some

large ornaments, which may not be present in the gallery

images. The Rank-1 recognition rates of 0, 4, 11.1 and

22.2% for DSIFT, HOG, LPQ, RILPQ, Gabor wavelets,

LBPs, POEM, VGG and RNet need to be interpreted with

reservation since only 8 samples were available for this

experiment. Nevertheless, we believe that the low perfor-

mance still shows to a trend with respect to the perfor-

mance of ear recognition models in the presence of large

accessories.

5.2 Comparative evaluation

In the second series of experiments, we compare all con-

sidered techniques and explore how different covariates

effect the performance of individual recognition models. In

Fig. 5, a comparison of the Rank-1 recognition rates is

presented for all assessed techniques and all considered

covariates in the form of radar graphs. Here a larger area

covered by the graphs suggests a better performance.

The graphs show that among the descriptor-based

methods DSIF, LPQ and RILPQ are overall slightly infe-

rior to the other methods, which all perform similarly. In

terms of robustness, the POEM-based approach seems to

be a little more stable than the other techniques as the

outline of the graph is most stable with this approach. All

in all, the descriptor-based methods exhibit similar

behavior when confronted with different covariates point-

ing to the need to improve the recognition technology in

specific areas (e.g., in the presence of large accessories,

under severe head rotations).

Among the deep-learning-based model, SNet is clearly

the top performer and also the most robust among the

CNN-based approaches. The worst-performing deep-

learning model is RNet, which is outperformed by the all

other tested models. These results can be attributed to the

number of parameters that need to learned for the deep

models and the still relatively modest (from the per-

spective of deep learning) amount of ear images available

for training. Here, SNet has the clear advantage, as it

contains the lowest number of open parameters among the

deep models. The CNN models show similar sensitivity

Fig. 3 Sample images from the AWEx dataset
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characteristics as the descriptor-based methods, but the

sensitivity is less pronounced. For example, if we look at

the performance differences with respect to head

rotations, we can see that small differences can be

observed, but these are minimal when compared to the

local techniques.

Fig. 4 The performance plots show a comparison of eleven state-of-

the-art ear recognition techniques with respect to different covariates.

The plots show Rank-1 recognition rates in percent [%] (y-axis) and
relative AUC values (circle size: where the smallest AUC value

among the AUC values was set as the smallest, still visible dot, and

the largest value was set as the largest, visually acceptable circle).

Due to the small number of subjects for the Hispanic ethnicity

subgroup, the results for this subgroup were omitted from the

comparison. The small number of images also contributes to the

higher Rank-1 recognition rates for women compared to men. Large

pitch, roll and yaw (head) rotations show a negative impact on the

performance of all assessed techniques. The biggest impact is

observed with large accessories, but the results for this test are

generated with a small number of probe images. The results are best

viewed in color; the darker tones in each plot denote deep-learning-

based approaches
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When comparing descriptor-based methods to deep-

learning-based models, we can see the overall winner of

the comparison i SNet, but the worst-performing model is

gain a CNN suggesting that deep models are competitive

but need sufficient data to be trained effectively or feature a

sufficiently small number of parameters that need to be

learned.

5.3 Time and space complexity

Last but not least, we compare and analyze the time and

space complexity of the tested recognition techniques in

Fig. 6 and Table 2. Here, Fig. 6 (left) shows a comparison

of the average time needed to process one image vs. the

achieved recognition performance. The average time was

computed over the entire test set of 1000 AWE images. For

the descriptor-based methods, the processing time was

computed by running the experiments on the CPU of our

experimental hardware, whereas for the deep-learning-

based models the experiments were conducted on the GPU.

Ideally, a fast and efficient method should be as close as

possible to the x-axis and as far away from the y-axis as

possible. As we can see, the average time for all methods is

similar; a clear outlier here is the Gabor wavelet technique,

which takes significantly more time on average than the

competing methods. SNet is again the best approach in this

comparison, as it is reasonably fast, but with the highest

performance.

In Fig. 6, we see a similar comparison, but here the

feature vector length is plotted against the Rank-1 recog-

nition performance. As we can see, the clear outlier this

time is SNet, which generates a significantly larger feature

vector than the remaining techniques. Thus, when this is

Fig. 5 The radar graphs show a comparison of the Rank-1 recognition

rates of the evaluated recognition methods with respect to different

covariates. The axes show values from 0 to 60%. Acc., Ro., Occ.,
Fem. and Cau. denote accuracy, roll, occlusion, female and

Caucasian, respectively. For a description of the labels, please refer

to Fig. 2 and the description in [24]. The graphs are best viewed in

color
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problematic due to the limited availability of resources,

alternative models would need to be sought, despite the

best overall performance of SNet so far.

When look at the information presented in Table 2, we

notice a striking difference between descriptor-based and

deep-learning-based methods, i.e., the model size that

needs to be stored in RAM is in the range of MBs, with the

biggest model, VGG, requiring a total 541.1 MB just to

load the model. The cost for the descriptor-based methods,

on the other hand, is 0 as far as memory requirements is

concerned. Descriptor-based methods also do not require

any training procedure (their training time is 0) and can be

applied to ear recognition problems without the need for

enormous amounts of training data. Hence, if training data

are scarce, descriptor-based methods may still have an edge

over deep-learning-based models, where typically millions

of parameters need to be learned during training (that takes

several hours or even days depending on the hardware and

amount of training data). As we already pointed out above,

the feature vector size is comparable among all methods

(except for SNet), but serves here only for illustrative

purposes to show the approximate magnitude of the vector

sizes. In general, the sizes can vary depending on the

choice of open parameters of the recognition techniques

considered.

Fig. 6 Time and space complexity vs. the recognition performance.

Left: The average test time is plotted versus the Rank-1 recognition

rate. The closer a methods is located to the lower right corner, the

better the characteristics with respect to the time complexity. Right:

The feature vector size is plotted against the Rank-1 recognition rate.

The closer a methods is located to the lower right corner, the better

the characteristics with respect to the space complexity. Best viewed

in color

Table 2 Time and space complexity

Method Model size (in MB) # Parameters to train Feature vector size Training time (in h) Average test time—per image (in ms)

BSIF 0 0 9216 0 8

DSIFT 0 0 12,800 0 8

Gabor 0 0 5760 0 270

HOG 0 0 8712 0 4

LBP 0 0 9971 0 18

LPQ 0 0 9216 0 6

POEM 0 0 11,328 0 25

RILPQ 0 0 9216 0 25

RNet 96.8 25,636,712 2047 � 18 11

SNet 3.5 1,235,496 86,527 � 8 3

VGG 541.1 117,479,232 4095 � 12 9

The table shows a comparison of all considered techniques with respect to different characteristics such as the model size, number of parameters

to train, feature vector size, training time and average test time
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6 Conclusion

We have evaluated eight popular dense descriptor-based

feature extraction methods for ear recognition and three

popular approaches based on convolutional neural net-

works and analyzed their performance with respect to

different covariates. The results show that gender and

ethnicity with some exceptions do not impact identification

performance significantly. However, severe head rotations

and severe use of accessories all negatively impact recog-

nition performance. Furthermore, we showed that hair

occlusions negatively impact performance to a much more

limited extent than other factors. The reason for this, we

argue, is that hair that belongs to a specific person is similar

throughout all (or most) ear images. We found that the

tested methods differ significantly in terms of time and

space complexity and that in situations where resources are

scarce, descriptor-based methods may be favored over

CNN models, despite their slightly inferior performance.
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20. Emeršič Ž, Peer P (2015) Ear biometric database in the wild. In:

2015 4th international work conference on bioinspired intelli-

gence (IWOBI), pp 27–32
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45. Pietikäinen M, Hadid A, Zhao G, Ahonen T (2011) Computer

vision using local binary patterns. Computational imaging and

vision. Springer, New York

46. Prakash S, Gupta P (2013) An efficient ear recognition technique

invariant to illumination and pose. Telecommun Syst

52(3):1435–1448

47. Purkait R (2015) Role of external ear in establishing personal

identity—a short review. Austin J Forensic Sci Criminol 2(2):1–5

48. Simonyan K, Zisserman A (2014) Very deep convolutional net-

works for large-scale image recognition. arXiv preprint arXiv:

1409.1556
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